Correlating the microstructure and hardness of AlSi10Mg powder with additively-manufactured parts upon in-situ heat-treatments in laser beam powder bed fusion

被引:3
|
作者
Phutela, Chinmay [1 ]
Bosio, Federico [1 ]
Li, Peifeng [2 ]
Aboulkhair, Nesma T. [1 ,2 ]
机构
[1] Technol Innovat Inst TII, Adv Mat Res Ctr, Addit Mfg Grp, Abu Dhabi, U Arab Emirates
[2] Univ Nottingham, Fac Engn, Ctr Addit Mfg, Nottingham NG8 1BB, England
来源
关键词
In -situ heat treatments; Laser powder bed fusion; Additive manufacturing; Powder characterization; Aluminium alloy; Hardness; Microstructure; MECHANICAL-PROPERTIES; RAPID SOLIDIFICATION; MELTED ALSI10MG; EVOLUTION;
D O I
10.1016/j.addlet.2023.100168
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser beam powder bed fusion (PBF-LB) of AlSi10Mg has attained technology maturity in various industries. Nevertheless, the manufactured components often require thermal treatments to tailor their microstructures and mechanical properties. Experimental development of suitable thermal cycles for the printed parts is time and energy intensive. However, the characteristic microstructure of parts produced by PBF-LB resembles that of gasatomised powder. Therefore, this study presents an in-depth investigation on the correlation between the properties of the powder and PBF-LB samples. In-situ heat treatment methodology was deployed to consistently heat-treat the powder and PBF-LB samples using elevated build-plate temperatures (220 - 500 & DEG;C). Scanning electron microscopy revealed Si atoms' diffusion, followed by eutectic network's disruption and Si particles' coarsening, with increased build plate temperatures, in both parts and powder. X-ray diffraction and differential scanning calorimetry showed a strong correlation between the powder and parts treated at the same build-plate temperatures. A 500 & DEG;C in-situ heat-treatment temperature reduced the hardness by -43% (powder) and -52% (printed samples). Nano- and micro-hardness values on the powder and printed samples also exhibited high correlation. Similarities between the powder and part's microstructural changes with temperature were attributed to the similar scale of cooling rates in gas-atomisation and PBF-LB, respectively. The findings in this study pave a clear pathway that experimentation on small batches of powder via ex-situ heat treatments could be efficiently used as a high-throughput method to predict the effect of thermal treatments on printed parts and to design new heat treatment protocols, specifically for PBF-LB materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Ultrasonic evaluation of elastic properties in laser powder bed fusion manufactured AlSi10Mg components
    Czink, Steffen
    Dietrich, Stefan
    Schulze, Volker
    NDT & E INTERNATIONAL, 2022, 132
  • [32] Degradation of AlSi10Mg powder during laser based powder bed fusion processing
    Raza, Ahmad
    Fiegl, Tobias
    Hanif, Imran
    MarkstrOm, Andreas
    Franke, Martin
    Koerner, Carolin
    Hryha, Eduard
    MATERIALS & DESIGN, 2021, 198
  • [33] Fatigue response of AlSi10Mg by laser powder bed fusion: influence of build orientation, heat, and surface treatments
    Fini, S.
    Croccolo, D.
    De Agostinis, M.
    Olmi, G.
    Paiardini, L.
    Scapecchi, C.
    Mele, M.
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (02) : 1385 - 1403
  • [34] Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere
    Yunmian Xiao
    Yongqiang Yang
    Shibiao Wu
    Jie Chen
    Di Wang
    Changhui Song
    ActaMetallurgicaSinica(EnglishLetters), 2022, 35 (03) : 486 - 500
  • [35] Static assessment of flawed thin AlSi10Mg parts produced by Laser Powder Bed Fusion
    Minerva, G.
    Patriarca, L.
    Foletti, S.
    Beretta, S.
    MATERIALS & DESIGN, 2022, 224
  • [36] Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere
    Xiao, Yunmian
    Yang, Yongqiang
    Wu, Shibiao
    Chen, Jie
    Wang, Di
    Song, Changhui
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2022, 35 (03) : 486 - 500
  • [37] Residual stress analysis of thin AlSi10Mg parts produced by Laser Powder Bed Fusion
    Salmi, Alessandro
    Atzeni, Eleonora
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (01) : 49 - 61
  • [38] Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere
    Yunmian Xiao
    Yongqiang Yang
    Shibiao Wu
    Jie Chen
    Di Wang
    Changhui Song
    Acta Metallurgica Sinica (English Letters), 2022, 35 : 486 - 500
  • [39] Static assessment of flawed thin AlSi10Mg parts produced by Laser Powder Bed Fusion
    Minerva, G.
    Patriarca, L.
    Foletti, S.
    Beretta, S.
    Materials and Design, 2022, 224
  • [40] Effect of heat treatment on microstructure and mechanical properties of AlSi10Mg fabricated using laser powder bed fusion
    Huang, Nancy
    Luo, Qixiang
    Bartles, Dean L.
    Simpson, Timothy W.
    Beese, Allison M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 895