Improved TPH for object detection in aerial images

被引:0
作者
Wang, Xiaobin [1 ]
Zhu, Dekang [1 ]
Yan, Ye [1 ]
Sun, Haohui [2 ]
机构
[1] Acad Mil Sci, Natl Innovat Inst Def Technol, Beijing, Peoples R China
[2] China Aerosp Sci & Technol Corp, Intelligent Unmanned Syst Overall Technol Res & De, Beijing, Peoples R China
关键词
General object detection; small object detection; aerial images; convolution layers;
D O I
10.1080/14498596.2023.2247689
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Deep learning has greatly enhanced the general object detection capability. However, when directly applied to aerial images, performance drops significantly due to: (1) Most objects in aerial images are dense and small; (2) UAV altitude variations cause diverse object scales. In this paper, we improve TPH algorithm for exceptional aerial object detection performance. Specifically, we introduce the SPD module to replace the strided convolution layers and pooling layers. And we improve the TPH backbone and neck networks so that large and small objects can be detected accurately. Experiments on VisDrone2019 and DOTA datasets validate the effectiveness of our method.
引用
收藏
页码:493 / 505
页数:13
相关论文
共 36 条
  • [1] SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network
    Bai, Yancheng
    Zhang, Yongqiang
    Ding, Mingli
    Ghanem, Bernard
    [J]. COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 : 210 - 226
  • [2] CONVOLUTIONAL NEURAL NETWORKS FOR NEAR REAL-TIME OBJECT DETECTION FROM UAV IMAGERY IN AVALANCHE SEARCH AND RESCUE OPERATIONS
    Bejiga, Mesay Belete
    Zeggada, Abdallah
    Melgani, Farid
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 693 - 696
  • [3] Bochkovskiy A., 2020, YOLOV4 OPTIMAL SPEED, DOI DOI 10.48550/ARXIV.2004.10934
  • [4] A Global-Local Self-Adaptive Network for Drone-View Object Detection
    Deng, Sutao
    Li, Shuai
    Xie, Ke
    Song, Wenfeng
    Liao, Xiao
    Hao, Aimin
    Qin, Hong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1556 - 1569
  • [5] VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results
    Du, Dawei
    Zhu, Pengfei
    Wen, Longyin
    Bian, Xiao
    Ling, Haibin
    Hu, Qinghua
    Peng, Tao
    Zheng, Jiayu
    Wang, Xinyao
    Zhang, Yue
    Bo, Liefeng
    Shi, Hailin
    Zhu, Rui
    Kumar, Aashish
    Li, Aijin
    Zinollayev, Almaz
    Askergaliyev, Anuar
    Schumann, Arne
    Mao, Binjie
    Lee, Byeongwon
    Liu, Chang
    Chen, Changrui
    Pan, Chunhong
    Huo, Chunlei
    Yu, Da
    Cong, Dechun
    Zeng, Dening
    Pailla, Dheeraj Reddy
    Li, Di
    Wang, Dong
    Cho, Donghyeon
    Zhang, Dongyu
    Bai, Furui
    Jose, George
    Gao, Guangyu
    Liu, Guizhong
    Xiong, Haitao
    Qi, Hao
    Wang, Haoran
    Qiu, Heqian
    Li, Hongliang
    Lu, Huchuan
    Kim, Ildoo
    Kim, Jaekyum
    Shen, Jane
    Lee, Jihoon
    Ge, Jing
    Xu, Jingjing
    Zhou, Jingkai
    Meier, Jonas
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 213 - 226
  • [6] Everingham M., 2011, PATTERN ANAL STAT MO, V8, P5
  • [7] Ezequiel CAF, 2014, INT CONF UNMAN AIRCR, P274, DOI 10.1109/ICUAS.2014.6842266
  • [8] Rich feature hierarchies for accurate object detection and semantic segmentation
    Girshick, Ross
    Donahue, Jeff
    Darrell, Trevor
    Malik, Jitendra
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 580 - 587
  • [9] He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
  • [10] Huang YC, 2022, AAAI CONF ARTIF INTE, P1026