Thermodynamic stability and holographic heat engine efficiency of a Kerr-Newmann-NUT-Kiselev-AdS black hole in Rastall gravity

被引:2
作者
Karmakar, Sourav [1 ]
Roy, Tanusree [2 ]
Debnath, Ujjal [2 ]
机构
[1] Jadavpur Univ, Dept Instrumentat & Elect, Salt Lake Bypass,LB Block,Sect III, Kolkata 700098, India
[2] Indian Inst Engn Sci & Technol, Dept Math, Howrah 711103, India
关键词
Rastall gravity; KN-NUT-Kiselev-AdS black hole; Perfect fluid matter; Dark energy; Holographic heat engine; PARAMETER-ESTIMATION; ENERGY; QUINTESSENCE; MATTER;
D O I
10.1016/j.aop.2023.169425
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Einstein's general relativity was modified to the Rastall grav-ity by generalizing the energy-momentum conservation law to T & mu;& nu; ;& mu; & lambda;R & nu; and for this change in the covariant conservation = of T & mu;& nu; the thermodynamic characteristics also show some inter-esting properties. Here we discuss the thermodynamics, phase transition, stability and heat engine construction of a Kerr- Newman-NUT-Kiselev-AdS black hole in 4D Rastall gravity. We consider the space to be surrounded by dark energy, a specific perfect fluid matter. The dark energy has significant effects on the thermodynamic variables of the black hole. Here, the energy condition constraints the Rastall parameter (& lambda;). We finally find that the equation-of-state is related to the Rastall parameter (& lambda;) even when it is reduced to the critical point. The cosmological constant leads us to consider the black hole as a heat engine and determine the efficiency of the Carnot cycle for the black hole. In conclusion, we discuss possible methodologies for constraining the black hole parameters from astrophysical observations. & COPY; 2023 Published by Elsevier Inc.
引用
收藏
页数:18
相关论文
共 70 条
[1]  
Hennigar RA, 2017, Arxiv, DOI arXiv:1704.02314
[2]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[3]   On the physical meaning of the NUT parameter [J].
Al-Badawi, A. ;
Halilsoy, M. .
GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (12) :1729-1734
[4]   Dark energy dominance and cosmic acceleration in first-order formalism [J].
Allemandi, G ;
Borowiec, A ;
Francaviglia, M ;
Odintsov, SD .
PHYSICAL REVIEW D, 2005, 72 (06)
[5]   Reentrant phase transitions in rotating anti-de Sitter black holes [J].
Altamirano, Natacha ;
Kubiznak, David ;
Mann, Robert B. .
PHYSICAL REVIEW D, 2013, 88 (10)
[6]   Kerr Black Holes as Particle Accelerators to Arbitrarily High Energy [J].
Banados, Maximo ;
Silk, Joseph ;
West, Stephen M. .
PHYSICAL REVIEW LETTERS, 2009, 103 (11)
[7]   Quantum tunneling beyond semiclassical approximation [J].
Banerjee, Rabin ;
Majhi, Bibhas Ranjan .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (06)
[8]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[9]   GENERALIZED SECOND LAW OF THERMODYNAMICS IN BLACK-HOLE PHYSICS [J].
BEKENSTE.JD .
PHYSICAL REVIEW D, 1974, 9 (12) :3292-3300
[10]   BLACK HOLES AND SECOND LAW [J].
BEKENSTEIN, JD .
LETTERE AL NUOVO CIMENTO, 1972, 4 (15) :737-+