Research progress and application of deep learning in remaining useful life, state of health and battery thermal management of lithium batteries

被引:38
|
作者
He, Wenbin [1 ]
Li, Zongze [1 ]
Liu, Ting [1 ]
Liu, Zhaohui [2 ]
Guo, Xudong [1 ]
Du, Jinguang [1 ]
Li, Xiaoke [1 ]
Sun, Peiyan [3 ]
Ming, Wuyi [1 ,3 ]
机构
[1] Zhengzhou Univ Light Ind, Henan Key Lab Intelligent Mfg Mech Equipment, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Yutong Bus Co Ltd, Zhengzhou 450016, Peoples R China
[3] Guangdong HUST Ind Technol Res Inst, Guangdong Prov Key Lab Digital Mfg Equipment, Dongguan 523808, Peoples R China
关键词
Lithium battery; Deep learning; Remaining useful life; State of health; Battery thermal management; OF-CHARGE ESTIMATION; ION BATTERIES; NEURAL-NETWORK; ELECTRIC VEHICLES; INDICATOR EXTRACTION; THE-ART; PREDICTION; SYSTEM; HYBRID; MODEL;
D O I
10.1016/j.est.2023.107868
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium batteries are considered to be one of the most promising green energy sources in the future. However, the problems of prognostic and health management are the main factors restricting the application and development of lithium batteries. Therefore, an efficient and intelligent battery management system (BMS) is very important. In recent years, with the continuous development of deep learning (DL), it has shown a good research prospect in the BMS. In this paper, the application of DL in the prediction the of remaining useful life (RUL), state of health (SOH) and battery thermal management (BTM) of lithium batteries of different methods are systematically reviewed. This review evaluates different deep learning approaches to battery estimation and prediction in terms of predictive performance, advantages, and disadvantages. In addition, the review discusses the characteristics, achievements, limitations, and directions for improvement of different algorithms in the above applications for factors affecting charge and discharge cycles, complex environments, dynamic conditions, and different battery types. Key issues and challenges in terms of computational complexity and various internal and external factors are identified. Finally, the future opportunities and directions are discussed to design a more efficient and intelligent algorithm model, which can adapt to more advanced BMS.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments
    Liu Y.
    Hou B.
    Ahmed M.
    Mao Z.
    Feng J.
    Chen Z.
    Applied Energy, 2024, 358
  • [42] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Deep Learning and Soft Sensing
    Wang, Zhuqing
    Ma, Qiqi
    Guo, Yangming
    ACTUATORS, 2021, 10 (09)
  • [43] A novel deep learning framework for state of health estimation of lithium-ion battery
    Fan, Yaxiang
    Xiao, Fei
    Li, Chaoran
    Yang, Guorun
    Tang, Xin
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [44] A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life
    Xu, Qing
    Wu, Min
    Khoo, Edwin
    Chen, Zhenghua
    Li, Xiaoli
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (01) : 177 - 187
  • [45] State of Health estimation and Remaining Useful Life prediction for lithium-ion batteries by Improved Particle Swarm Optimization-Back Propagation Neural Network
    Ma, Yan
    Yao, Meihao
    Liu, Hongcheng
    Tang, Zhiguo
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [46] Application of state of health estimation and remaining useful life prediction for lithium-ion batteries based on AT-CNN-BiLSTM
    Zhao, Feng-Ming
    Gao, De-Xin
    Cheng, Yuan-Ming
    Yang, Qing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Remaining useful life prediction based on state assessment using edge computing on deep learning
    Hsu, Hsin-Yao
    Srivastava, Gautam
    Wu, Hsin-Te
    Chen, Mu-Yen
    COMPUTER COMMUNICATIONS, 2020, 160 : 91 - 100
  • [48] Early prediction of remaining useful life for Lithium-ion batteries based on a hybrid machine learning method
    Tong, Zheming
    Miao, Jiazhi
    Tong, Shuiguang
    Lu, Yingying
    JOURNAL OF CLEANER PRODUCTION, 2021, 317
  • [49] Remaining Useful Life Estimation of Lithium-Ion Batteries Based on Optimal Time Series Health Indicator
    Yun, Zhonghua
    Qin, Wenhu
    IEEE ACCESS, 2020, 8 : 55447 - 55461
  • [50] Current research and challenges of deep learning for equipment remaining useful life prediction
    Liu H.
    Liu Z.
    Jia W.
    Zhang D.
    Tan J.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2021, 27 (01): : 34 - 52