Thermal reduced graphene oxide-based gas sensor for rapid detection of ammonia at room temperature

被引:5
|
作者
Xiao, Xue [1 ]
Jin, Wei [1 ]
Tang, Cao [1 ]
Qi, Xin [1 ]
Li, Rui [1 ]
Zhang, Yi [1 ]
Zhang, Wusheng [1 ]
Yu, Xue [1 ]
Zhu, Xiaodong [1 ]
Ma, Yanqing [1 ,2 ]
Ma, Lei [1 ]
机构
[1] Tianjin Univ, Tianjin Int Ctr Nanoparticles & Nanosyst, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
关键词
OXYGEN FUNCTIONAL-GROUPS; RAMAN-SPECTROSCOPY; REDUCTION; NH3; PERFORMANCE; GRAPHITE; SELECTIVITY; TRANSITION; ADSORPTION; IMPACT;
D O I
10.1007/s10853-023-08696-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reduced graphene oxide (rGO) has attracted an enormous interest as a promising candidate for gas detection due to its large specific surface area, abundant oxygen-containing functional groups and scalable production. Although intense works have been conducted on rGO-based gas sensors, there is still much room for improvement on both their response speed and thorough exploration. In this work, thermal reduced graphene oxide (TRGO) is fabricated by spinning dilute graphene oxide (GO) suspension combined with subsequent in situ thermal reduction. TRGO sheets with size of more than 10 & mu;m are uniformly dispersed and smoothly coated on Au interdigitated electrodes. The ammonia sensing performance indicates that 250 & DEG;C-TRGO exhibits the shortest response time of 11 s to 100-ppm ammonia. Besides, 130 & DEG;C-TRGO shows strong response to low concentration ammonia with the calculated limit of detection (LOD) of 0.9 ppm. After being exposed to air for 3 months, it still maintains 74.23% of its initial responsivity demonstrating the excellent long-term stability. Moreover, the systematic investigation on the effect of annealing temperature to the sensing performance of TRGO elaborates that with the increase in thermal reduction temperature, the responsivity monotonically decreases while the response time will decrease initially and then gradually increase after the turning point of 250 & DEG;C. These results shed a light on developing TRGO-based ammonia sensors (TBASs) for future practical applications.
引用
收藏
页码:11016 / 11028
页数:13
相关论文
共 50 条
  • [41] Facile preparation of reduced graphene oxide-based gas barrier films for organic photovoltaic devices
    Kim, T.
    Kang, J. H.
    Yang, S. J.
    Sung, S. J.
    Kim, Y. S.
    Park, C. R.
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (10) : 3403 - 3411
  • [42] Selective and Sensitive Detection of Formaldehyde at Room Temperature by Tin Oxide Nanoparticles/Reduced Graphene Oxide Composite
    Kashyap, Anurag
    Chakraborty, Bipradip
    Siddiqui, Mohd Salman
    Tyagi, Himanshu
    Kalita, Hemen
    ACS APPLIED NANO MATERIALS, 2023, 6 (09) : 7948 - 7959
  • [43] A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide
    Hafiz, Syed Muhammad
    Ritikos, Richard
    Whitcher, Thomas James
    Razib, Nadia Md.
    Bien, Daniel Chia Sheng
    Chanlek, Narong
    Nakajima, Hideki
    Saisopa, Thanit
    Songsiriritthigul, Prayoon
    Huang, Nay Ming
    Rahman, Saadah Abdul
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 193 : 692 - 700
  • [44] Surface energetics of graphene oxide and reduced graphene oxide determined by inverse gas chromatographic technique at infinite dilution at room temperature
    Lee, Seul-Yi
    Lee, Jong-Hoon
    Kim, Yeong-Hun
    Mahajan, Roop L.
    Park, Soo-Jin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 628 : 758 - 768
  • [45] Selective room temperature ammonia gas detection using 2-amino pyridine functionalized graphene oxide
    Kumar, Ravi
    Kumar, Anil
    Singh, Rakesh
    Kashyap, Rajesh
    Kumar, Rajiv
    Kumar, Dinesh
    Kumar, Mukesh
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 110
  • [46] Efficient Room Temperature Hydrogen Gas Sensor Using ZnO Nanoparticles-Reduced Graphene Oxide Nanohybrid
    Das, Swapan
    Roy, Sunipa
    Bhattacharya, Tara Shankar
    Sarkar, Chandan Kumar
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 1264 - 1272
  • [47] Conductometric room temperature ammonia sensor based on porous tin oxide
    Solanki, Vanaraj
    Banerjee, Atanu
    Nanda, K. K.
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 366
  • [48] Copper oxide/reduced graphene oxide/graphene composite structure for the chemiresistive detection of acetaldehyde at room temperature
    Li, Quanfu
    He, Rui
    Feng, Fan
    Jiang, Chunsheng
    Song, Shuxiang
    Peng, Huiling
    Tang, Xiaohu
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 413
  • [49] Zinc Oxide-Reduced Graphene Oxide-based Photoelectrochemical Sensor Combined with Molecularly Imprinting Technique for Sensitive Detection of Oxytetracycline
    Peng, You-Yuan
    Xu, Shu-Hong
    Pan, Qing-Hong
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2024, 52 (02) : 256 - 266
  • [50] Functionalized Reduced Graphene Oxide Thin Films for Ultrahigh CO2 Gas Sensing Performance at Room Temperature
    Gupta, Monika
    Hawari, Huzein Fahmi
    Kumar, Pradeep
    Burhanudin, Zainal Arif
    Tansu, Nelson
    NANOMATERIALS, 2021, 11 (03) : 1 - 18