Cooling Performance Optimization of Air-Cooled Battery Thermal Management System with L-Type Flow

被引:7
|
作者
Zhang, Xinyue [1 ]
Fan, Xueliang [1 ]
Deng, Yelin [1 ]
机构
[1] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
air cooling; battery thermal management systems; configuration optimization; structural design; LITHIUM-ION BATTERY; ELECTRIC VEHICLES; FUEL-CELL; DESIGN; PACK; CONFIGURATION; PLATE;
D O I
10.1002/ente.202300382
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The development of electric vehicles has driven the refinement of thermal management technology for batteries. Due to the limitations of device locations during operation, battery thermal management systems (BTMS) with diverse geometric configurations should be considered. Herein, optimization of the L-type air-cooled structures (L(A) and L(B)) is performed with the objective of minimizing the maximum temperature difference while avoiding increasing system power consumption. The simulation indicates that optimization of the plenum angle is more effective than the widths of the divergence and convergence plenums for the BTMS L(A). Multivariate optimization of angle and widths decreases maximum temperature (T-max) by 1.79 K and maximum temperature difference (& UDelta;T-max) by 2.45 K compared to the original BTMS. The adjustment of BTMS L(B) takes place in three aspects: plenum widths, inlet position, and baffle setting. Among these, optimizing the plenum widths proves to be the most efficient method. The T-max and & UDelta;T-max decrease by 1.41 and 2.13 K, respectively, and the power consumption decreases by 11.30% compared to the original BTMS. The optimal systems display improved cooling performance under varying battery heat generation rates and air flow rates, demonstrating the effectiveness of the optimization methods in enhancing cooling efficiency.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Cooling performance optimization of air-cooled battery thermal management system
    Wang, Meiwei
    Teng, Shiyang
    Xi, Huan
    Li, Yuquan
    APPLIED THERMAL ENGINEERING, 2021, 195
  • [2] Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement
    Chen, Kai
    Song, Mengxuan
    Wei, Wei
    Wang, Shuangfeng
    ENERGY, 2018, 145 : 603 - 613
  • [3] Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern
    Chen, Kai
    Wu, Weixiong
    Yuan, Fang
    Chen, Lin
    Wang, Shuangfeng
    ENERGY, 2019, 167 : 781 - 790
  • [4] A flexible optimization study on air-cooled battery thermal management system by considering of system volume and cooling performance
    Lu, Hao
    Tang, Xiaole
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [5] Structure optimization of parallel air-cooled battery thermal management system
    Chen, Kai
    Wang, Shuangfeng
    Song, Mengxuan
    Chen, Lin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 111 : 943 - 952
  • [6] Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement
    Chen, Kai
    Song, Mengxuan
    Wei, Wei
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 132 : 309 - 321
  • [7] Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study
    Chen, Kai
    Li, Zeyu
    Chen, Yiming
    Long, Shuming
    Hou, Junsheng
    Song, Mengxuan
    Wang, Shuangfeng
    ENERGIES, 2017, 10 (10):
  • [8] Structure optimization of air-cooled battery thermal management system based on neural network
    Chen, Jiahui
    Xuan, Dongji
    Chen, Cong
    Chen, Jianlong
    Shen, Yunde
    IONICS, 2023, 29 (07) : 2773 - 2782
  • [9] Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy
    Chen, Kai
    Wang, Shuangfeng
    Song, Mengxuan
    Chen, Lin
    APPLIED THERMAL ENGINEERING, 2017, 123 : 177 - 186
  • [10] Optimization design of a parallel air-cooled battery thermal management system with spoilers
    Zhang, Furen
    Lin, Aizhen
    Wang, Pengwei
    Liu, Peiwen
    APPLIED THERMAL ENGINEERING, 2021, 182