Cobalt Oxide Modified Reduced Graphene Oxide Nanocomposite as Anode Materials for Lithium-Ion Batteries

被引:3
|
作者
Alsherari, Sahr A. [1 ]
机构
[1] Univ Tabuk, Alwajh Coll, Dept Chem, Tabuk 71421, Saudi Arabia
关键词
Nano-Co3O4; Reduced graphene oxide (rGO); Hydrothermal method; Electrode materials; Lithium-ion batteries; MICROWAVE-ASSISTED SYNTHESIS; HIGH-PERFORMANCE ANODE; HIGH-CAPACITY; CO3O4;
D O I
10.1007/s10904-023-02737-2
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this paper, Co3O4 nanoparticles and Co3O4 modified reduced graphene oxide (Co3O4/rGO) are successfully elaborated by hydrothermal method and used as anode materials in lithium-ion batteries. The structure, composition, and morphology of the hydrothermal powders are characterized by XRD, Raman spectroscopy, SEM, and TEM while their electrochemical performance was evaluated using cyclic voltammetry and galvanostatic charge/discharge studies. The Co3O4/rGO anode exhibit improved electrochemical performance in terms of specific capacity, reversibility and stability compared to single-component Co3O4. At 0.1 A g(-1), the specific charge/discharge capacity for the pure Co3O4 is 855 mAh g(-1) and 850 mAh g(-1) respectively, while for Co3O4/rGO composite is about 1198 mAh g(-1) and 1285 mAh g(-1) respectively. It is found that the conductivity values increase with adding of the rGO from 4.4 x 10(-4) ohm cm for the Co3O4 to 4.5 x 10(5) ohm cm for Co3O4/rGO composite. The improvement in the electrochemical capacity of the composite anode is mainly ascribed to a cooperative effect between the rGO with good electrical conductivity and the unique nano-sized Co3O4 with a short diffusion pathway for lithium ions diffusion.
引用
收藏
页码:3002 / 3010
页数:9
相关论文
共 50 条
  • [1] Cobalt Oxide Modified Reduced Graphene Oxide Nanocomposite as Anode Materials for Lithium-Ion Batteries
    Sahr A. Alsherari
    Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33 : 3002 - 3010
  • [2] Metal Oxide Wrapped by Reduced Graphene Oxide Nanocomposites as Anode Materials for Lithium-Ion Batteries
    Aslam, Junaid
    Wang, Yong
    NANOMATERIALS, 2023, 13 (02)
  • [3] Metal Oxide/graphene composite anode materials for lithium-ion batteries
    LIANG JunFei
    ZHOU Jing
    GUO Lin
    Science Foundation in China, 2013, 21 (01) : 59 - 72
  • [4] Reduced graphene oxide-wrapped copper cobalt selenide composites as anode materials for high-performance lithium-ion batteries
    Hui, Xin
    Zhao, Jiachang
    Mao, Jianfeng
    Zhao, Hongbin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 663
  • [5] Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries
    Wang, Liyuan
    Guo, Hailong
    Wang, Wei
    Teng, Kunyue
    Xu, Zhiwei
    Chen, Cheng
    Li, Cuiyu
    Yang, Caiyun
    Hu, Chuansheng
    ELECTROCHIMICA ACTA, 2016, 211 : 499 - 506
  • [6] Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery
    Rai, Alok Kumar
    Anh, Ly Tuan
    Gim, Jihyeon
    Mathew, Vinod
    Kang, Jungwon
    Paul, Baboo Joseph
    Singh, Nitish Kumar
    Song, Jinju
    Kim, Jaekook
    JOURNAL OF POWER SOURCES, 2013, 244 : 435 - 441
  • [7] Tin oxide-titanium oxide/graphene composited as anode materials for lithium-ion batteries
    Chen, Shan-Shan
    Qin, Xue
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (10) : 2893 - 2902
  • [8] Tin oxide-titanium oxide/graphene composited as anode materials for lithium-ion batteries
    Shan-Shan Chen
    Xue Qin
    Journal of Solid State Electrochemistry, 2014, 18 : 2893 - 2902
  • [9] Enhanced electrochemical performance of ZnMoO4/reduced graphene oxide composites as anode materials for lithium-ion batteries
    Xue, Ruinan
    Hong, Wei
    Pan, Zeng
    Jin, Wei
    Zhao, Huilin
    Song, Yahui
    Zhou, Jingkuo
    Liu, Yu
    ELECTROCHIMICA ACTA, 2016, 222 : 838 - 844
  • [10] Hydrothermal synthesis of uniform tin oxide nanoparticles on reduced activated graphene oxide as anode material for lithium-ion batteries
    Seong, Chae-Yong
    Jin, Xuanzhen
    Kim, Dae Kyom
    Hwang, Taejin
    Piao, Yuanzhe
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 845 : 6 - 12