On the Kemeny time for continuous-time reversible and irreversible Markov processes with applications to stochastic resetting and to conditioning towards forever-survival

被引:2
作者
Mazzolo, Alain [1 ]
Monthus, Cecile [2 ]
机构
[1] Univ Paris Saclay, Serv Etud Reacteurs & Math Appl, CEA, F-91191 Gif Sur Yvette, France
[2] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France
关键词
markov processes; reversible or irreversible; mean-first-passage times; kemeny time; generator eigenvalues; stochastic resetting; conditioning towards survival; QUASI-STATIONARY DISTRIBUTIONS; LARGE DEVIATIONS; EIGENTIME IDENTITY; THERMODYNAMIC FORMALISM; KIRCHHOFF INDEX; CONSTANT; SYSTEMS; CONVERGENCE; ERGODICITY; GRAPHS;
D O I
10.1088/1742-5468/acd695
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
For continuous-time ergodic Markov processes, the Kemeny time t(*) is the characteristic time needed to converge towards the steady state P-*(x): in real-space, the Kemeny time t* corresponds to the average of the mean-first-passage-time t(x, x(0)) over the final configuration x drawn with the steady state P-*(x), which turns out to be independent of the initial configuration x(0); in the spectral domain, the Kemeny time t(*) corresponds to the sum of the inverses of all the non-vanishing eigenvalues ?(n) =? 0 of the opposite generator. We describe many illustrative examples involving jumps and/or diffusion in one dimension, where the Kemeny time can be explicitly computed as a function of the system-size, via its real-space definition and/or via its spectral definition: we consider both reversible processes satisfying detailed-balance where the eigenvalues are real, and irreversible processes characterized by non-vanishing steady currents where the eigenvalues can be complex. In particular, we study the specific properties of the Kemeny times for Markov processes with stochastic resetting, and for absorbing Markov processes conditioned to survive forever.
引用
收藏
页数:114
相关论文
共 164 条
[1]   Exact and Efficient Sampling of Conditioned Walks [J].
Adorisio, Matteo ;
Pezzotta, Alberto ;
de Mulatier, Clelia ;
Micheletti, Cristian ;
Celani, Antonio .
JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (01) :79-100
[2]  
Aldous David., 1995, REVERSIBLE MARKOV CH
[3]   AN EDGE CENTRALITY MEASURE BASED ON THE KEMENY CONSTANT [J].
Altafini, Diego ;
Bini, Dario A. ;
Cutini, Valerio ;
Meini, Beatrice ;
Poloni, Federico .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (02) :648-669
[4]   Untitled [J].
Angel, Omer ;
Holmes, Mark .
JOURNAL OF APPLIED PROBABILITY, 2019, 56 (04) :1269-1270
[5]   Diffusions conditioned on occupation measures [J].
Angeletti, Florian ;
Touchette, Hugo .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
[6]   Microscopic Structure of Shocks and Antishocks in the ASEP Conditioned on Low Current [J].
Belitsky, V. ;
Schuetz, G. M. .
JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (01) :93-111
[7]   Analysis of Markov Influence Graphs [J].
Berkhout, Joost ;
Heidergott, Bernd F. .
OPERATIONS RESEARCH, 2019, 67 (03) :892-904
[8]   Linear and nonlinear response in the aging regime of the one-dimensional trap model [J].
Bertin, EM ;
Bouchaud, JP .
PHYSICAL REVIEW E, 2003, 67 (06) :4
[9]   Subdiffusion and localization in the one-dimensional trap model [J].
Bertin, EM ;
Bouchaud, JP .
PHYSICAL REVIEW E, 2003, 67 (02) :20
[10]   Macroscopic fluctuation theory [J].
Bertini, Lorenzo ;
De Sole, Alberto ;
Gabrielli, Davide ;
Jona-Lasinio, Giovanni ;
Landim, Claudio .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :593-636