Cross-diffusion induced Turing instability of Hopf bifurcating periodic solutions in the reaction-diffusion enzyme reaction model

被引:2
|
作者
Liu, Haicheng [1 ]
Yuan, Wenshuo [1 ]
Ge, Bin [1 ]
Shen, Jihong [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Heilongjiang, Peoples R China
关键词
Sporns-Seelig model; diffusion; Hopf bifurcation; periodic solutions; Turing instability; LENGYEL-EPSTEIN SYSTEM; PREDATOR-PREY SYSTEM; CELLULAR CONTROL-MODELS; PATTERN-FORMATION; SPATIOTEMPORAL PATTERNS; NEGATIVE FEEDBACK; BEHAVIOR; DELAYS;
D O I
10.1142/S1793524523500365
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aiming at the spatial pattern phenomenon in biochemical reactions, an enzyme-reaction Sporns-Seelig model with cross-diffusion is chosen as study object. Applying the central manifold theory, normal form method, local Hopf bifurcation theorem and perturbation theory, we study Turing instability of the spatially homogeneous Hopf bifurcation periodic solutions. At last, the theoretical results are verified by numerical simulations.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Nonnegative solutions to reaction-diffusion system with cross-diffusion and nonstandard growth conditions
    Arumugam, Gurusamy
    Tyagi, Jagmohan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (10) : 6576 - 6597
  • [32] Diffusion-Induced Instability of the Periodic Solutions in a Reaction-Diffusion Predator-Prey Model with Dormancy of Predators
    Wang, Mi
    MATHEMATICS, 2023, 11 (08)
  • [33] Cross-diffusion induced Turing instability for a competition model with saturation effect
    Li, Qiang
    Liu, Zhijun
    Yuan, Sanling
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 64 - 77
  • [34] An instability framework of Hopf-Turing-Turing singularity in 2-component reaction-diffusion systems
    Izuhara, Hirofumi
    Kobayashi, Shunusuke
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2025, 42 (01) : 63 - 112
  • [35] Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model
    Li, Xin
    Jiang, Weihua
    Shi, Junping
    IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (02) : 287 - 306
  • [36] Pattern dynamics in a bimolecular reaction-diffusion model with saturation law and cross-diffusion
    Lian, Li-Na
    Yan, Xiang-Ping
    Zhang, Cun-Hua
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [37] Turing instability-induced oscillations in coupled reaction-diffusion systems
    Wang, Nan
    Tong, Yuan
    Liu, Fucheng
    Li, Xiaoxuan
    He, Yafeng
    Fan, Weili
    CHINESE PHYSICS B, 2025, 34 (03)
  • [38] Influence of self- and cross-diffusion on wave train solutions of reaction-diffusion systems
    Mukhopadhyay, B
    Bhattacharyya, R
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2005, 36 (07) : 415 - 422
  • [39] Reaction-diffusion system approximation to the cross-diffusion competition system
    Izuhara, Hirofumi
    Mimura, Masayasu
    HIROSHIMA MATHEMATICAL JOURNAL, 2008, 38 (02) : 315 - 347
  • [40] Turing instability in reaction-diffusion models on complex networks
    Ide, Yusuke
    Izuhara, Hirofumi
    Machida, Takuya
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 457 : 331 - 347