A novel deep learning-based approach for malware detection

被引:76
|
作者
Shaukat, Kamran [1 ,2 ]
Luo, Suhuai [1 ]
Varadharajan, Vijay [3 ]
机构
[1] Univ Newcastle, Sch Informat & Phys Sci, Callaghan, Australia
[2] Univ Punjab, Dept Data Sci, Lahore 54890, Pakistan
[3] Univ Newcastle, Adv Cyber Secur Engn Res Ctr ACSRC, Callaghan, Australia
关键词
Malware detection; Cybersecurity; Machine learning; Deep learning; Transfer learning; Ensembling; Support vector machine; Modelling; Malware; Image-based malware detection; Convolutional neural network; Classification; Cyberattack; FRAMEWORK;
D O I
10.1016/j.engappai.2023.106030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malware detection approaches can be classified into two classes, including static analysis and dynamic analysis. Conventional approaches of the two classes have their respective advantages and disadvantages. For example, static analysis is faster but cannot detect the malware variants generated through code obfuscation, whereas dynamic analysis can effectively detect variants generated through code obfuscation but is slower and requires intensive resources. This paper proposes a novel deep learning-based approach for malware detection. It delivers better performance than conventional approaches by combining static and dynamic analysis advantages. First, it visualises a portable executable (PE) file as a coloured image. Second, it extracts deep features from the colour image using fine-tuned deep learning model. Third, it detects malware based on the deep features using support vector machines (SVM). The proposed method combines deep learning with machine learning and eliminates the need for intensive feature engineering tasks and domain knowledge. The proposed approach is scalable, cost-effective, and efficient. The detection effectiveness of the proposed method is validated through 12 machine learning models and 15 deep learning models. The generalisability of the proposed framework is validated on various benchmark datasets. The proposed approach outperformed with an accuracy of 99.06% on the Malimg dataset. The Wilcoxon signed-rank test is used to show the statistical significance of the proposed framework. The detailed experimental results demonstrate the superiority of the proposed method over the other state-of-the-art approaches, with an average increase in accuracy of 16.56%. Finally, to tackle the problems of imbalanced data and the shortage of publicly available datasets for malware detection, various data augmentation techniques are proposed, which lead to improved performance. It is evident from the results that the proposed framework can be useful to the defence industry, which will be helpful in devising more efficient malware detection solutions.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] CCLearner: A Deep Learning-Based Clone Detection Approach
    Li, Liuqing
    Feng, He
    Zhuang, Wenjie
    Meng, Na
    Ryder, Barbara
    2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), 2017, : 249 - 259
  • [22] An adaptive semi-supervised deep learning-based framework for the detection of Android malware
    Wajahat, Ahsan
    He, Jingsha
    Zhu, Nafei
    Mahmood, Tariq
    Nazir, Ahsan
    Pathan, Muhammad Salman
    Qureshi, Sirajuddin
    Ullah, Faheem
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (03) : 5141 - 5157
  • [23] A Deep Learning Approach to Android Malware Feature Learning and Detection
    Su, Xin
    Zhang, Dafang
    Li, Wenjia
    Zhao, Kai
    2016 IEEE TRUSTCOM/BIGDATASE/ISPA, 2016, : 244 - 251
  • [24] Malware detection based on deep learning algorithm
    Ding Yuxin
    Zhu Siyi
    Neural Computing and Applications, 2019, 31 : 461 - 472
  • [25] Malware detection based on deep learning algorithm
    Ding Yuxin
    Zhu Siyi
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (02): : 461 - 472
  • [26] Malware Detection Techniques Based on Deep Learning
    Sreekumari, Prasanthi
    2020 IEEE 6TH INT CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / 6TH IEEE INT CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING, (HPSC) / 5TH IEEE INT CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2020, : 65 - 70
  • [27] A Malware Detection Approach Using Autoencoder in Deep Learning
    Xing, Xiaofei
    Jin, Xiang
    Elahi, Haroon
    Jiang, Hai
    Wang, Guojun
    IEEE ACCESS, 2022, 10 : 25696 - 25706
  • [28] A novel deep learning-based method for detection of weeds in vegetables
    Jin, Xiaojun
    Sun, Yanxia
    Che, Jun
    Bagavathiannan, Muthukumar
    Yu, Jialin
    Chen, Yong
    PEST MANAGEMENT SCIENCE, 2022, 78 (05) : 1861 - 1869
  • [29] A Deep Learning-Based Approach for Road Surface Damage Detection
    Kulambayev, Bakhytzhan
    Beissenova, Gulbakhram
    Katayev, Nazbek
    Abduraimova, Bayan
    Zhaidakbayeva, Lyazzat
    Sarbassova, Alua
    Akhmetova, Oxana
    Issayev, Sapar
    Suleimenova, Laura
    Kasenov, Syrym
    Shadinova, Kunsulu
    Shyrakbayev, Abay
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3403 - 3418
  • [30] A novel deep learning-based technique for driver drowsiness detection
    Mukherjee, Prithwijit
    Roy, Anisha Halder
    HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES, 2024, 34 (06) : 667 - 684