Deformation and fatigue behaviour of additively manufactured Scalmalloy? with bimodal microstructure

被引:17
作者
Schimbaeck, D. [1 ]
Kaserer, L. [2 ]
Mair, P. [2 ]
Palm, F. [3 ]
Leichtfried, G. [2 ]
Pogatscher, S. [1 ]
Hohenwarter, A. [4 ]
机构
[1] Univ Leoben, Chair Nonferrous Met, Leoben, Austria
[2] Univ Innsbruck, Fac Engn Sci, Dept Mechatron, Mat Sci, Innsbruck, Austria
[3] Airbus Def & Space GmbH, Airbus Cent R&T, Taufkirchen, Germany
[4] Univ Leoben, Dept Mat Sci, Leoben, Austria
关键词
Additive Manufacturing; Scalmalloy; Fatigue properties; Fracture Mechanics; Microstructure; MECHANICAL-PROPERTIES; CRACK-GROWTH; GRAIN-SIZE; STRENGTH; ALUMINUM; ALLOY; PROPAGATION; DEPENDENCE; DUCTILITY; FRACTURE;
D O I
10.1016/j.ijfatigue.2023.107592
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Laser powder bed fusion produced Scalmalloy (R) is a high potential candidate in aerospace industry. However, fatigue properties are the Achilles heel of additive manufacturing process, impeding high-performance fatigue loaded applications. This paper aims to unveil the impact of unique bimodal microstructure on the quasi-static tensile and the fatigue properties. It is shown that the material intrinsic fatigue strength of Scalmalloy (R) outperforms its additively manufactured aluminium counterparts significantly, already reaching values of additively manufactured Ti-6Al-4V. Moreover, by evaluating the R-curve for Scalmalloy (R), short crack growth was also taken into consideration for the analysis of the fatigue behaviour, elaborating an advanced Kitagawa-Takahashi diagram.
引用
收藏
页数:14
相关论文
共 77 条
  • [11] Defect structure process maps for laser powder bed fusion additive manufacturing
    Gordon, Jerard, V
    Narra, Sneha P.
    Cunningham, Ross W.
    Liu, He
    Chen, Hangman
    Suter, Robert M.
    Beuth, Jack L.
    Rollett, Anthony D.
    [J]. ADDITIVE MANUFACTURING, 2020, 36
  • [12] Gottstein G., 2014, Materialwissenschaft Und Werkstofftechnik
  • [13] Gu D., 2015, LASER ADDITIVE MANUF, DOI DOI 10.1007/978-3-662-46089-4
  • [14] THE DEFORMATION AND AGEING OF MILD STEEL .3. DISCUSSION OF RESULTS
    HALL, EO
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1951, 64 (381): : 747 - 753
  • [15] Additive manufacturing of metals
    Herzog, Dirk
    Seyda, Vanessa
    Wycisk, Eric
    Emmelmann, Claus
    [J]. ACTA MATERIALIA, 2016, 117 : 371 - 392
  • [16] Advances in ultrafine-grained materials
    Huang, Yi
    Langdon, Terence G.
    [J]. MATERIALS TODAY, 2013, 16 (03) : 85 - 93
  • [17] Grain size effects in aluminum processed by severe plastic deformation
    Koizumi, Takayuki
    Kuroda, Mitsutoshi
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 710 : 300 - 308
  • [18] Microstructure Evolution and Mechanical Property Response of 3D-Printed Scalmalloy with Different Heat-Treatment Times at 325 °C
    Kuo, C. N.
    Peng, P. C.
    Liu, D. H.
    Chao, C. Y.
    [J]. METALS, 2021, 11 (04)
  • [19] Relationship between ductility and the porosity of additively manufactured AlSi10Mg
    Laursen, Christopher M.
    DeJong, Stephanie A.
    Dickens, Sara M.
    Exil, Andrea N.
    Susan, Donald F.
    Carroll, Jay D.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 795
  • [20] Fatigue crack growth anisotropy in ultrafine-grained iron
    Leitner, Thomas
    Hohenwarter, Anton
    Ochensberger, Walter
    Pippan, Reinhard
    [J]. ACTA MATERIALIA, 2017, 126 : 154 - 165