Solving the nuclear pairing model with neural network quantum states

被引:8
作者
Rigo, Mauro [1 ]
Hall, Benjamin [2 ,3 ,4 ]
Hjorth-Jensen, Morten [2 ,3 ,5 ,6 ]
Lovato, Alessandro [4 ,7 ,8 ]
Pederiva, Francesco [1 ,8 ]
机构
[1] Univ Trento, Phys Dept, Via Sommar 14, I-38123 Trento, Italy
[2] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[3] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA
[4] Argonne Natl Lab, Phys Div, Argonne, IL 60439 USA
[5] Univ Oslo, Dept Phys, N-0316 Oslo, Norway
[6] Univ Oslo, Ctr Comp Sci Educ, N-0316 Oslo, Norway
[7] Argonne Natl Lab, Computat Sci Div, Argonne, IL 60439 USA
[8] INFN TIFPA Trento Inst Fundamental Phys & Applicat, Via Sommar 14, I-38123 Trento, Italy
基金
美国国家科学基金会;
关键词
MONTE-CARLO; RENORMALIZATION-GROUP; DIAGONALIZATION;
D O I
10.1103/PhysRevE.107.025310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a variational Monte Carlo method that solves the nuclear many-body problem in the occupation number formalism exploiting an artificial neural network representation of the ground-state wave function. A memory-efficient version of the stochastic reconfiguration algorithm is developed to train the network by minimizing the expectation value of the Hamiltonian. We benchmark this approach against widely used nuclear many-body methods by solving a model used to describe pairing in nuclei for different types of interaction and different values of the interaction strength. Despite its polynomial computational cost, our method outperforms coupled-cluster and provides energies that are in excellent agreement with the numerically exact full configuration-interaction values.
引用
收藏
页数:8
相关论文
共 58 条
  • [1] Variational Monte Carlo Calculations of A ≤ 4 Nuclei with an Artificial Neural-Network Correlator Ansatz
    Adams, Corey
    Carleo, Giuseppe
    Lovato, Alessandro
    Rocco, Noemi
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (02)
  • [2] Natural gradient works efficiently in learning
    Amari, S
    [J]. NEURAL COMPUTATION, 1998, 10 (02) : 251 - 276
  • [3] POSSIBLE ANALOGY BETWEEN THE EXCITATION SPECTRA OF NUCLEI AND THOSE OF THE SUPERCONDUCTING METALLIC STATE
    BOHR, A
    MOTTELSON, BR
    PINES, D
    [J]. PHYSICAL REVIEW, 1958, 110 (04): : 936 - 938
  • [4] Solving the quantum many-body problem with artificial neural networks
    Carleo, Giuseppe
    Troyer, Matthias
    [J]. SCIENCE, 2017, 355 (6325) : 602 - 605
  • [5] Quantum Monte Carlo methods for nuclear physics
    Carlson, J.
    Gandolfi, S.
    Pederiva, F.
    Pieper, Steven C.
    Schiavilla, R.
    Schmidt, K. E.
    Wiringa, R. B.
    [J]. REVIEWS OF MODERN PHYSICS, 2015, 87 (03) : 1067 - 1118
  • [6] Fermionic neural-network states for ab-initio electronic structure
    Choo, Kenny
    Mezzacapo, Antonio
    Carleo, Giuseppe
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [7] SHORT-RANGE CORRELATIONS IN NUCLEAR WAVE FUNCTIONS
    COESTER, F
    KUMMEL, H
    [J]. NUCLEAR PHYSICS, 1960, 17 (03): : 477 - 485
  • [8] BOUND STATES OF A MANY-PARTICLE SYSTEM
    COESTER, F
    [J]. NUCLEAR PHYSICS, 1958, 7 (04): : 421 - 424
  • [9] Pairing in nuclear systems: from neutron stars to finite nuclei
    Dean, DJ
    Hjorth-Jensen, M
    [J]. REVIEWS OF MODERN PHYSICS, 2003, 75 (02) : 607 - 656
  • [10] Exactly solvable pairing Hamiltonian for heavy nuclei
    Dukelsky, J.
    Lerma H, S.
    Robledo, L. M.
    Rodriguez-Guzman, R.
    Rombouts, S. M. A.
    [J]. PHYSICAL REVIEW C, 2011, 84 (06):