Existence and Concentration of Ground State Solutions for Chern-Simons-Schrodinger System with General Nonlinearity

被引:0
作者
Tan, Jin-Lan [1 ]
Kang, Jin-Cai [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Simons-Schrodinger system; ground state solution; concentration; variational methods; STANDING WAVES; NORMALIZED SOLUTIONS; EQUATION; MULTIPLICITY;
D O I
10.1007/s00009-023-02330-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of nonlinear Chern-Simons- Schro spexpressioncing diexpressioneresis dinger system with steep well potential. Under some suitable conditions on the nonlinearity, using the variational methods and the mountain pass theorem, we prove the existence of ground state solutions for lambda > 0 large enough. Furthermore, we verify the asymptotic behavior of ground state solutions as lambda -> +infinity.
引用
收藏
页数:13
相关论文
共 31 条
  • [1] EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N)
    BARTSCH, T
    WANG, ZQ
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) : 1725 - 1741
  • [2] BLOWING-UP TIME-DEPENDENT SOLUTIONS OF THE PLANAR, CHERN-SIMONS GAUGED NONLINEAR SCHRODINGER-EQUATION
    BERGE, L
    DEBOUARD, A
    SAUT, JC
    [J]. NONLINEARITY, 1995, 8 (02) : 235 - 253
  • [3] On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrodinger equations
    Byeon, Jaeyoung
    Huh, Hyungjin
    Seok, Jinmyoung
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) : 1285 - 1316
  • [4] Standing waves of nonlinear Schrodinger equations with the gauge field
    Byeon, Jaeyoung
    Huh, Hyungjin
    Seok, Jinmyoung
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) : 1575 - 1608
  • [5] Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrodinger system in H1 (R2)
    Chen, Sitong
    Zhang, Binlin
    Tang, Xianhua
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 185 : 68 - 96
  • [6] Sign-changing multi-bump solutions for the Chern-Simons-Schrodinger equations in R2
    Chen, Zhi
    Tang, Xianhua
    Zhang, Jian
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 1066 - 1091
  • [7] A multiplicity result for Chern-Simons-Schrodinger equation with a general nonlinearity
    Cunha, Patricia L.
    d'Avenia, Pietro
    Pomponio, Alessio
    Siciliano, Gaetano
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06): : 1831 - 1850
  • [8] Standing waves of the Schrodinger equation coupled with the Chern-Simons gauge field
    Huh, Hyungjin
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (06)
  • [9] SOLITON-SOLUTIONS TO THE GAUGED NONLINEAR SCHRODINGER-EQUATION ON THE PLANE
    JACKIW, R
    PI, SY
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (25) : 2969 - 2972
  • [10] CLASSICAL AND QUANTAL NONRELATIVISTIC CHERN-SIMONS THEORY
    JACKIW, R
    PI, SY
    [J]. PHYSICAL REVIEW D, 1990, 42 (10): : 3500 - 3513