In Silico Prediction of Secondary Metabolites and Biosynthetic Gene Clusters Analysis of Streptomyces thinghirensis HM3 Isolated from Arid Soil

被引:4
作者
Rehan, Medhat [1 ,2 ]
Gueddou, Abdellatif [3 ]
Alharbi, Abdulaziz [1 ]
Ben Abdelmalek, Imen [4 ]
机构
[1] Qassim Univ, Coll Agr & Vet Med, Dept Plant Prod & Protect, Buraydah 51452, Saudi Arabia
[2] Kafrelsheikh Univ, Fac Agr, Dept Genet, Kafr Al Sheikh 33516, Egypt
[3] Univ New Hampshire, Coll Life Sci, Dept Mol Cellular & Biomed Sci, Durham, NH 03824 USA
[4] Qassim Univ, Coll Sci, Dept Biol, Buraydah 52571, Saudi Arabia
来源
FERMENTATION-BASEL | 2023年 / 9卷 / 01期
关键词
Streptomyces; arid soil; secondary metabolites; genome sequencing; data mining; BGCs; TERPENE BIOSYNTHESIS; POLYKETIDE; ANTIBIOTICS; SYNTHETASE; CLASSIFICATION; ACTINOMYCIN; ANNOTATION; CALYCULIN; ACCURATE; SYSTEM;
D O I
10.3390/fermentation9010065
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Natural products produced by microorganisms are considered an important resource of bioactive secondary metabolites, such as anticancer, antifungal, antibiotic, and immunosuppressive molecules. Streptomyces are the richest source of bioactive natural products via possessing a wide number of secondary metabolite biosynthetic gene clusters (SM-BGCs). Based on rapid development in sequencing technologies with advances in genome mining, exploring the newly isolated Streptomyces species for possible new secondary metabolites is mandatory to find novel natural products. The isolated Streptomyces thinghirensis strain HM3 from arid and sandy texture soil in Qassim, SA, exerted inhibition activity against tested animal pathogenic Gram-positive bacteria and pathogenic fungal species. In this study, we report the draft genome of S. thinghirensis strain HM3, which consists of 7,139,324 base pairs (bp), with an average G+C content of 71.49%, predicting 7949 open reading frames, 12 rRNA operons (5S, 16S, 23S) and 60 tRNAs. An in silico analysis of strain HM3 genome by the antiSMASH and PRISM 4 online software for SM-BGCs predicted 16 clusters, including four terpene, one lantipeptide, one siderophore, two polyketide synthase (PKS), two non-ribosomal peptide synthetase (NRPS) cluster)/NRPS-like fragment, two RiPP/RiPP-like (ribosomally synthesised and post-translationally modified peptide product), two butyrolactone, one CDPS (tRNA-dependent cyclodipeptide synthases), and one other (cluster containing a secondary metabolite-related protein that does not fit into any other category) BGC. The presented BGCs inside the genome, along with antibacterial and antifungal activity, indicate that HM3 may represent an invaluable source for new secondary metabolites.
引用
收藏
页数:22
相关论文
共 103 条
[1]   Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf [J].
Ahsan, Taswar ;
Chen, Jianguang ;
Zhao, Xiuxiang ;
Irfan, Muhammad ;
Wu, Yuanhua .
AMB EXPRESS, 2017, 7 :1-9
[2]   Toward a new focus in antibiotic and drug discovery from the Streptornyces arsenal [J].
Antoraz, Sergio ;
Santamaria, Ramon I. ;
Diaz, Margarita ;
Sanz, David ;
Rodriguez, Hector .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[3]   Production of Siderophores by an Apple Root-Associated Streptomyces ciscaucasicus Strain GS2 Using Chemical and Biological OSMAC Approaches [J].
Armin, Reyhaneh ;
Zuhlke, Sebastian ;
Grunewaldt-Stocker, Gisela ;
Mahnkopp-Dirks, Felix ;
Kusari, Souvik .
MOLECULES, 2021, 26 (12)
[4]   Phosphate effect on filipin production and morphological differentiation in Streptomyces filipinensis and the role of the PhoP transcription factor [J].
Barreales, Eva G. ;
Payero, Tamara D. ;
de Pedro, Antonio ;
Aparicio, Jesus F. .
PLOS ONE, 2018, 13 (12)
[5]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[6]  
Bérdy J, 2012, J ANTIBIOT, V65, P385, DOI [10.1038/ja.2012.27, 10.1038/ja.2012.54]
[7]   antiSMASH 6.0: improving cluster detection and comparison capabilities [J].
Blin, Kai ;
Shaw, Simon ;
Kloosterman, Alexander M. ;
Charlop-Powers, Zach ;
van Wezel, Gilles P. ;
Medema, Marnix H. ;
Weber, Tilmann .
NUCLEIC ACIDS RESEARCH, 2021, 49 (W1) :W29-W35
[8]   New Nystatin-Related Antifungal Polyene Macrolides with Altered Polyol Region Generated via Biosynthetic Engineering of Streptomyces noursei [J].
Brautaset, Trygve ;
Sletta, Havard ;
Degnes, Kristin F. ;
Sekurova, Olga N. ;
Bakke, Ingrid ;
Volokhan, Olga ;
Andreassen, Trygve ;
Ellingsen, Trond E. ;
Zotchev, Sergey B. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (18) :6636-6643
[9]   BLAST plus : architecture and applications [J].
Camacho, Christiam ;
Coulouris, George ;
Avagyan, Vahram ;
Ma, Ning ;
Papadopoulos, Jason ;
Bealer, Kevin ;
Madden, Thomas L. .
BMC BIOINFORMATICS, 2009, 10
[10]   Secondary Metabolites Production by Actinomycetes and their Antifungal Activity [J].
Dewi, Tirta Kumala ;
Agustiani, Dwi ;
Antonius, Sarjiya .
4TH INTERNATIONAL CONFERENCE ON BIOLOGICAL SCIENCE (2015), 2017, :256-264