Innovative strategies in algal biomass pretreatment for biohydrogen production

被引:19
作者
Priya, Anshu [1 ]
Naseem, Shifa [2 ]
Pandey, Deepshikha [3 ]
Bhowmick, Anisha [4 ]
Attrah, Mustafa [5 ]
Dutta, Kasturi [4 ]
Rene, Eldon R. [5 ]
Suman, Sunil Kumar [2 ]
Daverey, Achlesh [3 ,6 ]
机构
[1] City Univ Hong Kong, Sch Energy & Environm, Tat Chee Ave, Hong Kong, Peoples R China
[2] CSIR Indian Inst Petr, Mat Resource Efficiency Div, Haridwar Rd, Dehra Dun 248005, Uttarakhand, India
[3] Doon Univ, Sch Environm & Nat Resources, Dehra Dun 248012, Uttarakhand, India
[4] Natl Inst Technol Rourkela, Dept Biotechnol & Med Engn, Rourkela 769008, Orissa, India
[5] IHE Delft Inst Water Educ, Dept Water Supply Sanitat & Environm Engn, Westvest 7, NL-2601 DA Delft, Netherlands
[6] Doon Univ, Sch Biol Sci, Dehra Dun 248012, Uttarakhand, India
关键词
Algal cell wall; Hybrid pretreatment; Biosurfactant; Nanoparticles; Biofuel; FERMENTATIVE HYDROGEN-PRODUCTION; SUPERCRITICAL WATER GASIFICATION; ENZYMATIC CELL DISRUPTION; MICROALGAL BIOMASS; LAMINARIA-JAPONICA; BIOETHANOL PRODUCTION; SCENEDESMUS-OBLIQUUS; OPTIMIZATION; ACID; WALL;
D O I
10.1016/j.biortech.2022.128446
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
引用
收藏
页数:14
相关论文
共 131 条
[1]   Yeast and enzymatic hydrolysis in converting Chlorella biomass into hydrogen gas by Rhodobacter sp. and Rhodopseudomonas palustris [J].
Abdel-Kader, Huwida A. A. ;
Abdel-Basset, R. ;
Danial, Amal W. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (03) :1516-1528
[2]  
Abdel-Latif H.M., 2022, AQUACULTURE
[3]  
Abdul Razack Sirajunnisa, 2016, Biotechnol Rep (Amst), V11, P70, DOI 10.1016/j.btre.2016.07.001
[4]   Supercritical fluid extraction of biofuels from biomass [J].
Akalin, Mehmet K. ;
Tekin, Kubilay ;
Karagoz, Selhan .
ENVIRONMENTAL CHEMISTRY LETTERS, 2017, 15 (01) :29-41
[5]   Analysis of biohydrogen production from palm oil mill effluent using a pilot-scale up-flow anaerobic sludge blanket fixed-film reactor in life cycle perspective [J].
Akhbari, Azam ;
Onn, Chiu Chuen ;
Ibrahim, Shaliza .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (68) :34059-34072
[6]   Combined bead milling and enzymatic hydrolysis for efficient fractionation of lipids, proteins, and carbohydrates of Chlorella vulgaris microalgae [J].
Alavijeh, Razieh Shafiei ;
Karimi, Keikhosro ;
Wijffels, Rene H. ;
van den Berg, Corjan ;
Eppink, Michel .
BIORESOURCE TECHNOLOGY, 2020, 309 (309)
[7]   Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae [J].
Anwar, Muhammad ;
Lou, Sulin ;
Chen, Liu ;
Li, Hui ;
Hu, Zhangli .
BIORESOURCE TECHNOLOGY, 2019, 292
[8]   Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review [J].
Awasthi, Mukesh Kumar ;
Singh, Ekta ;
Binod, Parameswaran ;
Sindhu, Raveendran ;
Sarsaiya, Surendra ;
Kumar, Aman ;
Chen, Hongyu ;
Duan, Yumin ;
Pandey, Ashok ;
Kumar, Sunil ;
Taherzadeh, Mohammad J. ;
Li, Ji ;
Zhang, Zengqiang .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 156
[9]   Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production [J].
Ban, Shidong ;
Lin, Weitie ;
Wu, Fangyan ;
Luo, Jianfei .
BIORESOURCE TECHNOLOGY, 2018, 251 :350-357
[10]   Energetically feasible biohydrogen production from sea eelgrass via homogenization through a surfactant, sodium tripolyphosphate [J].
Banu, J. Rajesh ;
Tamilarasan, T. ;
Kavitha, S. ;
Gunasekaran, M. ;
Gopalakrishnankumar ;
Al-Muhtaseb, Ala'a Hamed .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (10) :5900-5910