Scaling-Up of Thin-Film Photoelectrodes for Solar Water Splitting Based on Atomic Layer Deposition

被引:7
作者
Wang, Xinyan [1 ,2 ,3 ]
Zhang, Gong [1 ,2 ,3 ]
Liu, Bin [1 ,2 ,3 ]
Wang, Yixian [1 ,2 ,3 ]
Zhao, Chengjie [1 ,2 ,3 ]
Pei, Chunlei [1 ,2 ,3 ]
Deng, Hao [4 ]
Han, Wei [4 ]
Wang, Tuo [1 ,2 ,3 ,5 ,6 ]
Gong, Jinlong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] LONGi Green Energy Technol Co Ltd, Xian 710000, Shaanxi, Peoples R China
[5] Natl Univ Singapore, Joint Sch, Int Campus Tianjin Univ, Fuzhou 350207, Fujian, Peoples R China
[6] Tianjin Univ, Joint Sch, Int Campus Tianjin Univ, Fuzhou 350207, Fujian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
atomic layer deposition; computational fluid dynamics; film uniformity; scaling-up; photoelectrochemical water splitting; SILICON PHOTOANODES; HYDROGEN-PRODUCTION; AMORPHOUS TIO2; SI; BEHAVIOR; ALD; PROTECTION; CHEMISTRY; EVOLUTION; DYNAMICS;
D O I
10.1021/acsami.2c18480
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic layer deposition (ALD) is an established method to prepare protective layers for Si-based photoelectrodes for photo electrochemical (PEC) water splitting. Although ALD has been widely used in microelectronics and photovoltaics, it remains a great challenge to design simple and effective ALD systems to deposit large and uniform protective films for Si-based photoelectrodes with industrial sizes. This paper describes the design and realization of a simple ALD chamber configuration for photoelectrodes with large sizes, in which the influence of a gas redistributor over the gas flow and heat transfer during film growth was revealed by computational fluid dynamics simulations and experimental investigations. A simple circular baffle-type redistributor was proposed to establish a uniform gas flow field throughout the ALD reactor, resulting in a uniform temperature profile. With this simple baffle redistributor, the large-area Al2O3 monitor film (46 nm thickness) reached a good nonuniformity (Nu %) of 0.88% over a large area of 256 cm2. This design enables the fabrication of large-scale photocathodes from standard industrial-grade 166 mm Si(100) wafers (276 cm2) by depositing 50 nm TiO2 protective films with Nu % less than 5%. The obtained photocathode achieves a saturation current of 6.45 A with a hydrogen production rate of 43.2 mL/min under outdoor illumination. This work elucidates how flow pattern and heat transfer may influence the deposition of protective layers over large photoelectrodes, providing guidance for future industrial applications of PEC water splitting.
引用
收藏
页码:1138 / 1147
页数:10
相关论文
共 50 条
  • [41] Atomic layer deposition of zinc oxide and indium sulfide layers for Cu(In,Ga)Se2 thin-film solar cells
    Yousfi, EB
    Weinberger, B
    Donsanti, F
    Cowache, P
    Lincot, D
    [J]. THIN SOLID FILMS, 2001, 387 (1-2) : 29 - 32
  • [42] Gallium-doped tungsten trioxide thin film photoelectrodes for photoelectrochemical water splitting
    Kim Hang Ng
    Minggu, Lorna Jeffery
    Kassim, Mohammad B.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) : 9585 - 9591
  • [43] Transparent and water repellent ceria film grown by atomic layer deposition
    Lv, Qipeng
    Zhang, Shaoqian
    Deng, Songwen
    Xu, Yinsheng
    Li, Gang
    Li, Qingwei
    Jin, Yuqi
    [J]. SURFACE & COATINGS TECHNOLOGY, 2017, 320 : 190 - 195
  • [44] Gradient dopant profiling and spectral utilization of monolithic thin-film silicon photoelectrochemical tandem devices for solar water splitting
    Han, Lihao
    Digdaya, Ibadillah A.
    Buijs, Thom W. F.
    Abdi, Fatwa F.
    Huang, Zhuangqun
    Liu, Rui
    Dam, Bernard
    Zeman, Miro
    Smith, Wilson A.
    Smets, Arno H. M.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (08) : 4155 - 4162
  • [45] High-performance ZnO Thin-Film Transistors Prepared by Atomic Layer Deposition at Low Temperature
    Li, Qi
    Dong, Junchen
    Han, Dedong
    Zhang, Xing
    Wang, Yi
    [J]. 2021 5TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE (EDTM), 2021,
  • [46] Synthesis and Crystallization of Atomic Layer Deposition β-Eucryptite LiAlSiO4 Thin-Film Solid Electrolytes
    Sheil, Ryan
    Perng, Ya-Chuan
    Mars, Julian
    Cho, Jea
    Dunn, Bruce
    Toney, Michael F.
    Chang, Jane P.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (51) : 56935 - 56942
  • [47] Plasma-enhanced atomic layer deposition of indium-free ZnSnOx thin films for thin-film transistors
    Ryu, Seung Ho
    Hwang, Inhong
    Jeon, Dahui
    Lee, Sung Kwang
    Chung, Taek-Mo
    Han, Jeong Hwan
    Chae, Sieun
    Baek, In-Hwan
    Kim, Seong Keun
    [J]. APPLIED SURFACE SCIENCE, 2025, 680
  • [48] Atomic layer deposition of copper metal: Promising cathode in thin-film lithium-ion batteries
    Soltani, Niloofar
    Bahrami, Amin
    Hantusch, Martin
    He, Shiyang
    Dmitrieva, Evgenia
    Nielsch, Kornelius
    Mikhailova, Daria
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 486
  • [49] Transparent and Flexible Thin-Film Transistors with High Performance Prepared at Ultralow Temperatures by Atomic Layer Deposition
    Chen, Xue
    Zhang, Guozhen
    Wan, Jiaxian
    Guo, Tao
    Li, Lei
    Yang, Yanpeng
    Wu, Hao
    Liu, Chang
    [J]. ADVANCED ELECTRONIC MATERIALS, 2019, 5 (02)
  • [50] Ultrathin InGaO Thin Film Transistors by Atomic Layer Deposition
    Zhang, Jie
    Zheng, Dongqi
    Zhang, Zhuocheng
    Charnas, Adam
    Lin, Zehao
    Ye, Peide D. D.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2023, 44 (02) : 273 - 276