Scaling-Up of Thin-Film Photoelectrodes for Solar Water Splitting Based on Atomic Layer Deposition

被引:7
作者
Wang, Xinyan [1 ,2 ,3 ]
Zhang, Gong [1 ,2 ,3 ]
Liu, Bin [1 ,2 ,3 ]
Wang, Yixian [1 ,2 ,3 ]
Zhao, Chengjie [1 ,2 ,3 ]
Pei, Chunlei [1 ,2 ,3 ]
Deng, Hao [4 ]
Han, Wei [4 ]
Wang, Tuo [1 ,2 ,3 ,5 ,6 ]
Gong, Jinlong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] LONGi Green Energy Technol Co Ltd, Xian 710000, Shaanxi, Peoples R China
[5] Natl Univ Singapore, Joint Sch, Int Campus Tianjin Univ, Fuzhou 350207, Fujian, Peoples R China
[6] Tianjin Univ, Joint Sch, Int Campus Tianjin Univ, Fuzhou 350207, Fujian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
atomic layer deposition; computational fluid dynamics; film uniformity; scaling-up; photoelectrochemical water splitting; SILICON PHOTOANODES; HYDROGEN-PRODUCTION; AMORPHOUS TIO2; SI; BEHAVIOR; ALD; PROTECTION; CHEMISTRY; EVOLUTION; DYNAMICS;
D O I
10.1021/acsami.2c18480
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic layer deposition (ALD) is an established method to prepare protective layers for Si-based photoelectrodes for photo electrochemical (PEC) water splitting. Although ALD has been widely used in microelectronics and photovoltaics, it remains a great challenge to design simple and effective ALD systems to deposit large and uniform protective films for Si-based photoelectrodes with industrial sizes. This paper describes the design and realization of a simple ALD chamber configuration for photoelectrodes with large sizes, in which the influence of a gas redistributor over the gas flow and heat transfer during film growth was revealed by computational fluid dynamics simulations and experimental investigations. A simple circular baffle-type redistributor was proposed to establish a uniform gas flow field throughout the ALD reactor, resulting in a uniform temperature profile. With this simple baffle redistributor, the large-area Al2O3 monitor film (46 nm thickness) reached a good nonuniformity (Nu %) of 0.88% over a large area of 256 cm2. This design enables the fabrication of large-scale photocathodes from standard industrial-grade 166 mm Si(100) wafers (276 cm2) by depositing 50 nm TiO2 protective films with Nu % less than 5%. The obtained photocathode achieves a saturation current of 6.45 A with a hydrogen production rate of 43.2 mL/min under outdoor illumination. This work elucidates how flow pattern and heat transfer may influence the deposition of protective layers over large photoelectrodes, providing guidance for future industrial applications of PEC water splitting.
引用
收藏
页码:1138 / 1147
页数:10
相关论文
共 50 条
  • [31] Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics
    Riha, Shannon C.
    Koegel, Alexandra A.
    Emery, Jonathan D.
    Pellin, Michael J.
    Martinson, Alex B. F.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) : 4667 - 4673
  • [32] ALD Pt nanoparticles and thin-film coatings enhancing the stability and performance of silicon photocathodes for solar water splitting
    Trompoukis, Christos
    Feng, Ji-Yu
    Bosserez, Tom
    Ronge, Jan
    Dendooven, Jolien
    Detavernier, Christophe
    Baets, Roel
    Martens, Johan A.
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (12) : 3115 - 3123
  • [33] Atomic Layer Deposition of Al-Doped ZnO Contacts for ZnO Thin-Film Transistors
    Rowlinson, Ben D.
    Zeng, Jiale
    Akrofi, Joshua D.
    Patzig, Christian
    Ebert, Martin
    Chong, Harold M. H.
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (05) : 837 - 840
  • [34] Layer-Engineered Functional Multilayer Thin-Film Structures and Interfaces through Atomic and Molecular Layer Deposition
    Heikkinen, Mari
    Ghiyasi, Ramin
    Karppinen, Maarit
    ADVANCED MATERIALS INTERFACES, 2025, 12 (04):
  • [35] Combinatorial development of nanoporous WO3 thin film photoelectrodes for solar water splitting by dealloying of binary alloys
    Stepanovich, A.
    Sliozberg, K.
    Schuhmann, W.
    Ludwig, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (16) : 11618 - 11624
  • [36] Atomic Layer Deposition of SnO2-Based Composite Anodes for Thin-Film Lithium-Ion Batteries
    Zhao, Bo
    Dhara, Arpan
    Dendooven, Jolien
    Detavernier, Christophe
    FRONTIERS IN ENERGY RESEARCH, 2020, 8
  • [37] Efforts of implementing ultra-flexible thin-film encapsulation for optoelectronic devices based on atomic layer deposition technology
    Wang, Guanran
    Duan, Yu
    SMARTMAT, 2024, 5 (06):
  • [38] Probing the Performance Limitations in Thin-Film FeVO4 Photoanodes for Solar Water Splitting
    Feng, Jianyong
    Wang, Zhiqiang
    Zhao, Xin
    Yang, Guang
    Zhang, Bowei
    Chen, Zhong
    Huang, Yizhong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (18) : 9773 - 9782
  • [39] Atomic-layer-deposition-assisted ZnO nanoparticles for oxide charge-trap memory thin-film transistors
    Seo, Gi Ho
    Yun, Da Jeong
    Lee, Won Ho
    Yoon, Sung Min
    NANOTECHNOLOGY, 2017, 28 (07)
  • [40] Designing a hybrid thin-film/wafer silicon triple photovoltaic junction for solar water splitting
    Perez-Rodriguez, Paula
    Vijselaar, Wouter
    Huskens, Jurriaan
    Stam, Machiel
    Falkenberg, Michael
    Zeman, Miro
    Smith, Wilson
    Smets, Arno H. M.
    PROGRESS IN PHOTOVOLTAICS, 2019, 27 (03): : 245 - 254