Scaling-Up of Thin-Film Photoelectrodes for Solar Water Splitting Based on Atomic Layer Deposition

被引:7
作者
Wang, Xinyan [1 ,2 ,3 ]
Zhang, Gong [1 ,2 ,3 ]
Liu, Bin [1 ,2 ,3 ]
Wang, Yixian [1 ,2 ,3 ]
Zhao, Chengjie [1 ,2 ,3 ]
Pei, Chunlei [1 ,2 ,3 ]
Deng, Hao [4 ]
Han, Wei [4 ]
Wang, Tuo [1 ,2 ,3 ,5 ,6 ]
Gong, Jinlong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] LONGi Green Energy Technol Co Ltd, Xian 710000, Shaanxi, Peoples R China
[5] Natl Univ Singapore, Joint Sch, Int Campus Tianjin Univ, Fuzhou 350207, Fujian, Peoples R China
[6] Tianjin Univ, Joint Sch, Int Campus Tianjin Univ, Fuzhou 350207, Fujian, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
atomic layer deposition; computational fluid dynamics; film uniformity; scaling-up; photoelectrochemical water splitting; SILICON PHOTOANODES; HYDROGEN-PRODUCTION; AMORPHOUS TIO2; SI; BEHAVIOR; ALD; PROTECTION; CHEMISTRY; EVOLUTION; DYNAMICS;
D O I
10.1021/acsami.2c18480
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic layer deposition (ALD) is an established method to prepare protective layers for Si-based photoelectrodes for photo electrochemical (PEC) water splitting. Although ALD has been widely used in microelectronics and photovoltaics, it remains a great challenge to design simple and effective ALD systems to deposit large and uniform protective films for Si-based photoelectrodes with industrial sizes. This paper describes the design and realization of a simple ALD chamber configuration for photoelectrodes with large sizes, in which the influence of a gas redistributor over the gas flow and heat transfer during film growth was revealed by computational fluid dynamics simulations and experimental investigations. A simple circular baffle-type redistributor was proposed to establish a uniform gas flow field throughout the ALD reactor, resulting in a uniform temperature profile. With this simple baffle redistributor, the large-area Al2O3 monitor film (46 nm thickness) reached a good nonuniformity (Nu %) of 0.88% over a large area of 256 cm2. This design enables the fabrication of large-scale photocathodes from standard industrial-grade 166 mm Si(100) wafers (276 cm2) by depositing 50 nm TiO2 protective films with Nu % less than 5%. The obtained photocathode achieves a saturation current of 6.45 A with a hydrogen production rate of 43.2 mL/min under outdoor illumination. This work elucidates how flow pattern and heat transfer may influence the deposition of protective layers over large photoelectrodes, providing guidance for future industrial applications of PEC water splitting.
引用
收藏
页码:1138 / 1147
页数:10
相关论文
共 50 条
  • [21] Fabrication of Aluminum Oxide Thin-Film Devices Based on Atomic Layer Deposition and Pulsed Discrete Feed Method
    Lin, Shih-Chin
    Wang, Ching-Chiun
    Tien, Chuen-Lin
    Tung, Fu-Ching
    Wang, Hsuan-Fu
    Lai, Shih-Hsiang
    MICROMACHINES, 2023, 14 (02)
  • [22] Heterogeneous Doping to Improve the Performance of Thin-Film Hematite Photoanodes for Solar Water Splitting
    Kay, Asaf
    Grave, Daniel A.
    Ellis, David S.
    Dotan, Hen
    Rothschild, Avner
    ACS ENERGY LETTERS, 2016, 1 (04): : 827 - 833
  • [23] Thin-film encapsulation of polymer-based bulk-heterojunction photovoltaic cells by atomic layer deposition
    Chang, Chih-Yu
    Chou, Chun-Ting
    Lee, Yun-Jun
    Chen, Miin-Jang
    Tsai, Feng-Yu
    ORGANIC ELECTRONICS, 2009, 10 (07) : 1300 - 1306
  • [24] Thin-Film Barrier Performance of Zirconium Oxide Using the Low-Temperature Atomic Layer Deposition Method
    Duan, Yu
    Sun, Fengbo
    Yang, Yongqiang
    Chen, Ping
    Yang, Dan
    Duan, Yahui
    Wang, Xiao
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (06) : 3799 - 3804
  • [25] Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells
    Han, Lihao
    Abdi, Fatwa F.
    van de Krol, Roel
    Liu, Rui
    Huang, Zhuangqun
    Lewerenz, Hans-Joachim
    Dam, Bernard
    Zeman, Miro
    Smets, Arno H. M.
    CHEMSUSCHEM, 2014, 7 (10) : 2832 - 2838
  • [26] Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition
    Lin, Yuan-Yu
    Hsu, Che-Chen
    Tseng, Ming-Hung
    Shyue, Jing-Jong
    Tsai, Feng-Yu
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (40) : 22610 - 22617
  • [27] Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics
    Riha, Shannon C.
    Koegel, Alexandra A.
    Emery, Jonathan D.
    Pellin, Michael J.
    Martinson, Alex B. F.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) : 4667 - 4673
  • [28] ALD Pt nanoparticles and thin-film coatings enhancing the stability and performance of silicon photocathodes for solar water splitting
    Trompoukis, Christos
    Feng, Ji-Yu
    Bosserez, Tom
    Ronge, Jan
    Dendooven, Jolien
    Detavernier, Christophe
    Baets, Roel
    Martens, Johan A.
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (12) : 3115 - 3123
  • [29] Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors
    Qian Ma
    He-Mei Zheng
    Yan Shao
    Bao Zhu
    Wen-Jun Liu
    Shi-Jin Ding
    David Wei Zhang
    Nanoscale Research Letters, 2018, 13
  • [30] Atomic Layer Deposition of Al-Doped ZnO Contacts for ZnO Thin-Film Transistors
    Rowlinson, Ben D.
    Zeng, Jiale
    Akrofi, Joshua D.
    Patzig, Christian
    Ebert, Martin
    Chong, Harold M. H.
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (05) : 837 - 840