A novel convolutional informer network for deterministic and probabilistic state-of-charge estimation of lithium-ion batteries

被引:51
作者
Zou, Runmin [1 ]
Duan, Yuxin [1 ]
Wang, Yun [1 ]
Pang, Jiameng [2 ]
Liu, Fulin [1 ]
Sheikh, Shakil R. [3 ]
机构
[1] Cent South Univ, Sch Automation, Changsha, Hunan, Peoples R China
[2] China Railway Rolling Stock CRRC Zhuzhou Inst Co L, Zhuzhou, Hunan, Peoples R China
[3] Air Univ, Dept Mechatron Engn, Islamabad, Pakistan
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State-of-charge; Deterministic and probabilistic SOC estimation; Laplace distribution-based loss function; Convolution neural network; Informer network; OPEN-CIRCUIT VOLTAGE; HEALTH ESTIMATION; KALMAN FILTER;
D O I
10.1016/j.est.2022.106298
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate and real-time state-of-charge (SOC) estimation for lithium-ion batteries (LiB) is crucial for battery management system. However, the nonlinearity and complex dynamic properties of LiB pose a great challenge to the estimation of SOC. Some previous methods have undertaken high-precision SOC point estimation; however, the reliability of the estimated results has not been evaluated. These methods are too conservative and unreliable to describe the SOC sequence with random fluctuation characteristics by a certain number. In this study, a novel method for deterministic and probabilistic SOC estimation is proposed, called the Laplace distribution-based convolutional Informer network. The convolutional neural network (CNN) was used to extract spatial charac- teristics from the original input and enhance the ability of the model to capture sequential location information. An Informer network integrating the attention mechanism was used to learn the mapping relationship between these high-dimensional characteristics extracted by CNN and the SOC. This design makes the model suitable for fully extracting feature information from these data with complex temporal degradation properties. Considering the universality of measurement error and the importance of uncertainty estimation, the Laplace-based loss function was derived and used to train the proposed convolutional Informer network, reducing the influence of outliers on the estimated results and making the proposed model achieve uncertainty quantization. The effec- tiveness of the proposed model was evaluated on two public battery datasets. The results demonstrated that the proposed model produced accurate SOC point estimates and reliable interval estimates for different batteries under various operating conditions.
引用
收藏
页数:19
相关论文
共 46 条
[1]   Support Vector Machines Used to Estimate the Battery State of Charge [J].
Alvarez Anton, Juan Carlos ;
Garcia Nieto, Paulino Jose ;
Blanco Viejo, Cecilio ;
Vilan Vilan, Jose Antonio .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (12) :5919-5926
[2]   State of charge Kalman filter estimator for automotive batteries [J].
Barbarisi, O ;
Vasca, F ;
Glielmo, L .
CONTROL ENGINEERING PRACTICE, 2006, 14 (03) :267-275
[3]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[4]   Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries [J].
Bian, Chong ;
He, Huoliang ;
Yang, Shunkun .
ENERGY, 2020, 191
[5]   State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks [J].
Chaoui, Hicham ;
Ibe-Ekeocha, Chinemerem Christopher .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (10) :8773-8783
[6]   Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Ahmed, Ryan ;
Emadi, Ali .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) :6730-6739
[7]  
Child R, 2019, Arxiv, DOI [arXiv:1904.10509, 10.48550/arXiv.1904.10509]
[8]   Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression [J].
Deng, Zhongwei ;
Hu, Xiaosong ;
Lin, Xianke ;
Che, Yunhong ;
Xu, Le ;
Guo, Wenchao .
ENERGY, 2020, 205
[9]   Impedance Observer for a Li-Ion Battery Using Kalman Filter [J].
Do, Dinh Vinh ;
Forgez, Christophe ;
Benkara, Khadija El Kadri ;
Friedrich, Guy .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (08) :3930-3937
[10]   State of charge estimation for Li-ion battery based on model from extreme learning machine [J].
Du, Jiani ;
Liu, Zhitao ;
Wang, Youyi .
CONTROL ENGINEERING PRACTICE, 2014, 26 :11-19