Surface engineering of Li- and Mn-rich layered oxides for superior Li-ion battery

被引:20
|
作者
Ma, Lu-Xiang [1 ]
Chen, Tian-Dong [1 ]
Hai, Chun-Xi [1 ]
Dong, Sheng-De [1 ]
He, Xin [1 ]
Xu, Qi [1 ]
Feng, Hang [1 ]
Xin, A. [2 ]
Chen, Ji-Tao [3 ]
Zhou, Yuan [1 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610000, Peoples R China
[2] Qinghai Bldg & Mat Res Co Ltd, Xining 810000, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
关键词
LiPAA interphase layer; Interface side reaction; Cathode cracks; Capacity and voltage fading suppression; Li- and Mn-rich cathode; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; LI1.2NI0.13CO0.13MN0.54O2; LI1.2MN0.54NI0.13CO0.13O2; EVOLUTION; CARBON; AL2O3;
D O I
10.1007/s42864-022-00187-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Li- and Mn-rich layered oxides (R-LNCM) are considered as promising cathode materials for high-energy density lithium-ion batteries (LIBs). However, the interface side reaction aggravates the voltage and capacity fading between cathode material and electrolyte at high voltage, which severely hinders the practical application of LIBs. Herein, lithium polyacrylate (LiPAA) as the binder and coating agent is applied to suppress the voltage and capacity fading of R-LNCM electrode. The flexible LiPAA layers with high elasticity are capable of impeding cathode cracks on the particle surface via mechanical stress relief. Thus, superior voltage and capacity fading suppression on R-LNCM electrode is finally achieved. As a result, LiPAA-R-LNCM cathode exhibits a remarkable specific capacity of 186 mA.h.g(-1) with similar to 73% retention at 1. after 200 cycles. Further, the corresponding average discharge potential is maintained to similar to 3.1 V with only similar to 0.4 V falling.
引用
收藏
页码:259 / 268
页数:10
相关论文
共 50 条
  • [41] Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery
    Zheng Shiyou
    Dong Fei
    Pang Yuepeng
    Han Pan
    Yang Junhe
    JOURNAL OF INORGANIC MATERIALS, 2020, 35 (12) : 1295 - 1306
  • [42] Graphene/Li-ion battery
    Kheirabadi, Narjes
    Shafiekhani, Azizollah
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (12)
  • [43] Multi-strategies interface and structure design of Li- and Mn-rich layered oxide for all-solid-state lithium batteries
    Wu, Zhijun
    Shao, Qinong
    Wei, Yiqi
    Yan, Chenhui
    Gao, Panyu
    Lin, Yue
    Jiang, Yinzhu
    Yang, Yaxiong
    Chen, Jian
    Liu, Yongfeng
    Gao, Mingxia
    Sun, Wenping
    Pan, Hongge
    NANO ENERGY, 2024, 122
  • [44] Effects of Particle Size on Voltage Fade for Li-Rich Mn-Based Layered Oxides
    Zuo, Yuxuan
    Ma, Jin
    Jiang, Ning
    Xia, Dingguo
    ACS OMEGA, 2018, 3 (09): : 11136 - 11143
  • [45] Synthesis of porous CoMoO4 nanorods as a bifunctional cathode catalyst for a Li-O2 battery and superior anode for a Li- ion battery
    Wang, Liangjun
    Cui, Xinhang
    Gong, Lili
    Lyu, Zhiyang
    Zhou, Yin
    Dong, Wenhao
    Liu, Jia
    Lai, Min
    Huo, Fengwei
    Huang, Wei
    Lin, Ming
    Chen, Wei
    NANOSCALE, 2017, 9 (11) : 3898 - 3904
  • [46] Tuning Li2MO3 phase abundance and suppressing migration of transition metal ions to improve the overall performance of Li- and Mn-rich layered oxide cathode
    Zhang, Shiming
    Tang, Tian
    Ma, Zhihua
    Gu, Haitao
    Du, Wubing
    Gao, Mingxia
    Liu, Yongfeng
    Jian, Dechao
    Pan, Hongge
    JOURNAL OF POWER SOURCES, 2018, 380 : 1 - 11
  • [47] Composite Nanostructure Construction on the Grain Surface of Li-Rich Layered Oxides
    Wang, Errui
    Zhao, Yang
    Xiao, Dongdong
    Zhang, Xu
    Wu, Tianhao
    Wang, Boya
    Zubair, Muhammad
    Li, Yuqiang
    Sun, Xueliang
    Yu, Haijun
    ADVANCED MATERIALS, 2020, 32 (49)
  • [48] Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells
    Fu, Boyang
    Mozdzierz, Maciej
    Kulka, Andrzej
    Swierczek, Konrad
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (11) : 2345 - 2367
  • [49] Roadmap on Li-ion battery manufacturing research
    Grant, Patrick S.
    Greenwood, David
    Pardikar, Kunal
    Smith, Rachel
    Entwistle, Thomas
    Middlemiss, Laurence A.
    Murray, Glen
    Cussen, Serena A.
    Lain, M. J.
    Capener, M. J.
    Copley, M.
    Reynolds, Carl D.
    Hare, Sam D.
    Simmons, Mark J. H.
    Kendrick, Emma
    Zankowski, Stanislaw P.
    Wheeler, Samuel
    Zhu, Pengcheng
    Slater, Peter R.
    Zhang, Ye Shui
    Morrison, Andrew R. T.
    Dawson, Will
    Li, Juntao
    Shearing, Paul R.
    Brett, Dan J. L.
    Matthews, Guillaume
    Ge, Ruihuan
    Drummond, Ross
    Tredenick, Eloise C.
    Cheng, Chuan
    Duncan, Stephen R.
    Boyce, Adam M.
    Faraji-Niri, Mona
    Marco, James
    Roman-Ramirez, Luis A.
    Harper, Charlotte
    Blackmore, Paul
    Shelley, Tim
    Mohsseni, Ahmad
    Cumming, Denis J.
    JOURNAL OF PHYSICS-ENERGY, 2022, 4 (04):
  • [50] Electrospun In@C nanofibers as a superior Li-ion battery anode
    Guo, Wei
    Mei, Lin
    Li, Xiu
    Mao, Minglei
    Ma, Jianmin
    RSC ADVANCES, 2015, 5 (112): : 92522 - 92525