Harnack inequalities for functional SDEs driven by subordinate Volterra-Gaussian processes

被引:1
作者
Xu, Liping [1 ]
Yan, Litan [2 ]
Li, Zhi [1 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jingzhou, Peoples R China
[2] Donghua Univ, Coll Sci, Dept Stat, Shanghai, Peoples R China
关键词
Harnack inequality; Volterra-Gaussian processes; Subordinator; Sonine pairs; STOCHASTIC DIFFERENTIAL-EQUATIONS; EVOLUTION EQUATIONS; FORMULAS; NOISE;
D O I
10.1080/07362994.2024.2326499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the Girsanov theorem for a kind of Volterra-Gaussian process, which are the generalization of fractional Brownian motion, Liouville fractional Brownian motion, and fractional Ornstein-Uhlenbeck process, we establish the Harnack inequalities for a class of stochastic functional differential equations driven by a kind of Volterra-Gaussian processes with a subordinator by an approximation technique. Some known results have been generalized and improved.
引用
收藏
页码:622 / 641
页数:20
相关论文
共 46 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]  
Als E., 2003, Stochastics, V75, P129, DOI [10.1080/1045112031000078917, DOI 10.1080/1045112031000078917]
[3]   Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory [J].
Bao, Jianhai ;
Wang, Feng-Yu ;
Yuan, Chenggui .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (11) :4576-4596
[4]   Bismut formulae and applications for functional SPDEs [J].
Bao, Jianhai ;
Wang, Feng-Yu ;
Yuan, Chenggui .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (04) :509-522
[5]   Harnack inequalities for jump processes [J].
Bass, RF ;
Levin, DA .
POTENTIAL ANALYSIS, 2002, 17 (04) :375-388
[6]  
Benassi A, 1997, REV MAT IBEROAM, V13, P19
[7]   Skorohod and rough integration for stochastic differential equations driven by Volterra processes [J].
Cass, Thomas ;
Lim, Nengli .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (01) :132-168
[8]   Limiting measure and stationarity of solutions to stochastic evolution equations with Volterra noise [J].
Coupek, P. .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (03) :393-412
[9]   Stochastic evolution equations with Volterra noise [J].
Coupek, P. ;
Maslowski, B. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (03) :877-900
[10]   Lp-valued stochastic convolution integral driven by Volterra noise [J].
Coupek, Petr ;
Maslowski, Bohdan ;
Ondrejat, Martin .
STOCHASTICS AND DYNAMICS, 2018, 18 (06)