Construction of Oxygen Vacancy-Rich TiO2 Nanocrystals for Boosting the Ammonolysis of Caprolactam to 6-Aminocapronitrile

被引:6
作者
Huang, Qihui [1 ]
Zheng, Hui [1 ]
Wang, Xia [1 ]
Fu, Qi [2 ]
Gong, Tao [2 ]
Liu, Chang [2 ]
Ma, Huijuan [2 ]
Ye, Linmin [1 ]
Duan, Xinping [1 ]
Yuan, Youzhu [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Natl Engn Lab Green Chem Prod Alcohols Ethers Este, Xiamen 361005, Peoples R China
[2] Hubei Xingfa Chem Grp Co Ltd, Hubei Three Gorges Lab, Yichang 443002, Peoples R China
基金
中国国家自然科学基金;
关键词
oxygen vacancy; TiO2; caprolactam; ammonolysis; synergistic effect; N-ALKYLATION; EFFICIENT;
D O I
10.1021/acsami.3c19591
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hexamethylene diamine, an important chemical intermediate for polyamides, can be synthesized through the two-step route of caprolactam (CPL) ammonolysis to 6-aminocapronitrile (ACN), followed by hydrogenation. This method has received increasing attention from academia and industry. However, studies on the catalyst structure-performance correlation in CPL ammonolysis are still sporadic. In this work, a series of anatase TiO2 with different oxygen vacancy concentrations was prepared by chemical reduction using NaBH4. The oxygen vacancy on TiO2 surface, presented as Ti3+ sites, substantially enhances the adsorption and activation of NH3, which are demonstrated as the key steps in ammonolysis. Owing to the synergistic effect of Ti3+ and Ti4+ species, the CPL conversion rate and ACN selectivity of 85 and 97%, respectively, are achieved within 250 h. Density functional theory calculations showed that the intermediates on oxygen vacancy-rich TiO2 had a more favorable adsorption energy compared to those on intact TiO2, which is in good agreement with the experimental results.
引用
收藏
页码:13806 / 13814
页数:9
相关论文
共 50 条
[41]   An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance [J].
Guo, Yanru ;
Xiao, Limin ;
Zhang, Min ;
Li, Qiuye ;
Yang, Jianjun .
APPLIED SURFACE SCIENCE, 2018, 440 :432-439
[42]   Construction of 3D TiO2 nanoflower for deep catalytic oxidative desulfurization in diesel: Role of oxygen vacancy and Ti3+ [J].
Yu, Zhendong ;
Xun, Suhang ;
Jing, Meizan ;
Chen, Haofeng ;
Song, Weiyu ;
Chao, Yanhong ;
Rahmani, Mohammad ;
Ding, Yuxiao ;
Hua, Mingqing ;
Liu, Jian ;
Zhu, Wenshuai .
JOURNAL OF HAZARDOUS MATERIALS, 2022, 440
[43]   Oxygen migration triggering molybdenum exposure in oxygen vacancy-rich ultra-thin Bi2MoO6 nanoflakes: Dual binding sites governing selective CO2 reduction into liquid hydrocarbons [J].
Dai W. ;
Long J. ;
Yang L. ;
Zhang S. ;
Xu Y. ;
Luo X. ;
Zou J. ;
Luo S. .
Journal of Energy Chemistry, 2021, 61 :281-289
[44]   High-Performance Electrocatalytic Conversion of N2 to NH3 Using Oxygen-Vacancy-Rich TiO2 In Situ Grown on Ti3C2Tx MXene [J].
Fang, Yanfeng ;
Liu, Zaichun ;
Han, Jingrui ;
Jin, Zhaoyong ;
Han, Yaqian ;
Wang, Faxing ;
Niu, Yusheng ;
Wu, Yuping ;
Xu, Yuanhong .
ADVANCED ENERGY MATERIALS, 2019, 9 (16)
[45]   Fast and spontaneous reduction of gold ions over oxygen-vacancy-rich TiO2: A novel strategy to design defect-based composite photocatalyst [J].
Pan, Xiaoyang ;
Xu, Yi-Jun .
APPLIED CATALYSIS A-GENERAL, 2013, 459 :34-40
[46]   Direct Z-Scheme Oxygen-vacancy-rich TiO2/Ta3N5 heterojunction for degradation of ciprofloxacin under visible light: Degradation pathways and mechanism insight [J].
Li, Mingxin ;
Zhang, Jing ;
Wang, Lijing ;
Cheng, Xueying ;
Gao, Xinchun ;
Wang, Yuqi ;
Zhang, Guangya ;
Qi, Yunfeng ;
Zhai, Hongju ;
Guan, Renquan ;
Zhao, Zhao .
APPLIED SURFACE SCIENCE, 2022, 583
[47]   Enhanced Light Absorption and Photo-Generated Charge Separation Efficiency for Boosting Photocatalytic H2 Evolution through TiO2 Quantum Dots with N-Doping and Concomitant Oxygen Vacancy [J].
Pan, Ziwei ;
Zhu, Xi ;
Liu, Yuxin ;
Yang, Long ;
Jiao, Mingyang ;
Kang, Shuai ;
Luo, Jinling ;
Fu, Xie ;
Lu, Wenqiang .
SMALL, 2024, 20 (36)
[48]   Architecture of urchin-like TiO2 integrated ultrasmall Rh nanoparticles with oxygen vacancy-reinforced electronic metal-support interaction for boosting hydrogen production from ammonia borane hydrolysis [J].
Yuan, Meng ;
Zhong, Siting ;
Li, Guo ;
Fan, Guangyin ;
Yu, Xiaojun .
FUEL, 2024, 358
[49]   Customized Ultrathin Oxygen Vacancy-Rich Bi2W0.2Mo0.8O6 Nanosheets Enabling a Stepwise Charge Separation Relay and Exposure of Lewis Acid Sites toward Broad-Spectrum Photothermal Catalysis [J].
Yi, Jiayu ;
Yang, Xin ;
Shen, Lijuan ;
Xue, Hun ;
Yang, Min-Quan ;
Qian, Qingrong .
SMALL, 2024, 20 (51)
[50]   Dual oxygen vacancy defects-mediated efficient electron-hole separation via surface engineering of Ag/Bi2MoO6 nanosheets/TiO2 nanobelts ternary heterostructures [J].
Yin, Junwei ;
Xing, Zipeng ;
Kuang, Junyan ;
Li, Zhenzi ;
Zhu, Qi ;
Zhou, Wei .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 78 :155-163