Construction of Oxygen Vacancy-Rich TiO2 Nanocrystals for Boosting the Ammonolysis of Caprolactam to 6-Aminocapronitrile

被引:6
作者
Huang, Qihui [1 ]
Zheng, Hui [1 ]
Wang, Xia [1 ]
Fu, Qi [2 ]
Gong, Tao [2 ]
Liu, Chang [2 ]
Ma, Huijuan [2 ]
Ye, Linmin [1 ]
Duan, Xinping [1 ]
Yuan, Youzhu [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Natl Engn Lab Green Chem Prod Alcohols Ethers Este, Xiamen 361005, Peoples R China
[2] Hubei Xingfa Chem Grp Co Ltd, Hubei Three Gorges Lab, Yichang 443002, Peoples R China
基金
中国国家自然科学基金;
关键词
oxygen vacancy; TiO2; caprolactam; ammonolysis; synergistic effect; N-ALKYLATION; EFFICIENT;
D O I
10.1021/acsami.3c19591
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hexamethylene diamine, an important chemical intermediate for polyamides, can be synthesized through the two-step route of caprolactam (CPL) ammonolysis to 6-aminocapronitrile (ACN), followed by hydrogenation. This method has received increasing attention from academia and industry. However, studies on the catalyst structure-performance correlation in CPL ammonolysis are still sporadic. In this work, a series of anatase TiO2 with different oxygen vacancy concentrations was prepared by chemical reduction using NaBH4. The oxygen vacancy on TiO2 surface, presented as Ti3+ sites, substantially enhances the adsorption and activation of NH3, which are demonstrated as the key steps in ammonolysis. Owing to the synergistic effect of Ti3+ and Ti4+ species, the CPL conversion rate and ACN selectivity of 85 and 97%, respectively, are achieved within 250 h. Density functional theory calculations showed that the intermediates on oxygen vacancy-rich TiO2 had a more favorable adsorption energy compared to those on intact TiO2, which is in good agreement with the experimental results.
引用
收藏
页码:13806 / 13814
页数:9
相关论文
共 50 条
[31]   Highly efficient visible-light photocatalytic performance of MOFs-derived TiO2 via heterojunction construction and oxygen vacancy engineering [J].
Chen, Yue ;
Liu, Huan ;
Hu, Liang ;
Shen, Youliang ;
Qiu, Lingfang ;
Zhu, Liezhen ;
Shi, Qianxiang ;
Xu, Xun ;
Li, Ping ;
Duo, Shuwang .
CHEMICAL PHYSICS LETTERS, 2023, 815
[32]   Novel photoelectrocatalytic system of oxygen vacancy-rich black TiO2-x nanocones photoanode and natural air diffusion cathode for efficient water purification and simultaneous H2O2 production [J].
Liang, Ruiheng ;
Wu, Huizhong ;
Hu, Zhongzheng ;
Sun, Jiangli ;
Fu, Chunhong ;
Li, Shuaishuai ;
Zhang, Xiuwu ;
Zhou, Minghua .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 352
[33]   Superior catalytic performance of Pd-loaded oxygen-vacancy-rich TiO2 for formaldehyde oxidation at room temperature [J].
He, Miao ;
Cao, Yueqiang ;
Ji, Jian ;
Li, Kai ;
Huang, Haibao .
JOURNAL OF CATALYSIS, 2021, 396 :122-135
[34]   Oxygen-vacancy-rich phenanthroline/TiO2 nanocomposites: An integrated adsorption, detection and photocatalytic material for complex pollutants remediation [J].
Chen, Pinghua ;
Zheng, Huitao ;
Jiang, Hualin ;
Liu, Jun ;
Tu, Xinman ;
Zhang, Weibo ;
Phillips, Bailey ;
Fang, Lei ;
Jian-Ping Zou .
CHINESE CHEMICAL LETTERS, 2022, 33 (02) :907-911
[35]   Oxygen migration triggering molybdenum exposure in oxygen vacancy-rich ultra-thin Bi2MoO6 nanoflakes: Dual binding sites governing selective CO2 reduction into liquid hydrocarbons [J].
Dai, Weili ;
Long, Jianfei ;
Yang, Lixia ;
Zhang, Shuqu ;
Xu, Yong ;
Luo, Xubiao ;
Zou, Jianping ;
Luo, Shenglian .
JOURNAL OF ENERGY CHEMISTRY, 2021, 61 :281-289
[36]   An oxygen-vacancy-rich BiVO4/TiO2/Co2P2O7 heterojunction photoanode with Ti3C2Tx-derived TiO2 for enhanced photoelectrochemical water oxidation [J].
Hu, Yong ;
Chen, Pingguang ;
Zhou, Yuzhuo ;
Zhou, Guyu ;
Liu, Jikai .
RENEWABLE ENERGY, 2025, 254
[37]   Synergetic effect of TiO2 coating and oxygen vacancy boosting LiMn2O4 cathode for stable aqueous zinc-ion batteries [J].
Wu, Yunhao ;
Shi, Meng ;
Luo, Dan ;
Zhang, Zhaolong ;
Li, Zhi ;
Cheng, Zhiming ;
Kang, Xiaohong .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 943
[38]   Oxygen-vacancy-rich TiO2 enables highly active and durable water electrolysis of urchin-like RuO2 catalyst [J].
HongMei Gao ;
MeiLing Xiao ;
GuoQiang Li ;
LiQin Gao ;
QingLei Meng ;
ZhaoYan Luo ;
ErGui Luo ;
ChangPeng Liu ;
Zhao Jin ;
JunJie Ge ;
Wei Xing .
Science China Technological Sciences, 2022, 65 :2317-2324
[39]   Design of oxygen vacancy-rich Er-Bi2WO6 flower-like nanoparticles for enhanced photocatalytic performance in dye degradation and sterilization applications [J].
Huang, Shan ;
Wang, Mengmeng ;
Ni, Xinjie ;
Liu, Xinqi ;
Fang, Yi ;
Xiao, Qi ;
Zhang, Yue .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8 (01)
[40]   In-situ construction of N-doped Zn0.6Cd0.4S/oxygen vacancy-rich WO3 Z-scheme heterojunction compound for boosting photocatalytic hydrogen production [J].
Dong, Yuxin ;
Ma, Yueting ;
Shu, Aoqiang ;
Yan, Zhiyong ;
Wang, Hou ;
Wu, Yan .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 678 :1099-1108