Predicting Clinician Fixations on Glaucoma OCT Reports via CNN-Based Saliency Prediction Methods

被引:0
作者
Zang, Mingyang [1 ]
Mukund, Pooja [1 ]
Forsyth, Britney [1 ]
Laine, Andrew F. [1 ]
Thakoor, Kaveri A. [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
来源
IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY | 2024年 / 5卷
关键词
Deep learning; optical coherence tomography; saliency prediction; PERFORMANCE; RESIDENTS; EXPERTISE; AGREEMENT; DECISION; TRACKING; GAZE;
D O I
10.1109/OJEMB.2024.3367492
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Goal: To predict physician fixations specifically on ophthalmology optical coherence tomography (OCT) reports from eye tracking data using CNN based saliency prediction methods in order to aid in the education of ophthalmologists and ophthalmologists-in-training. Methods: Fifteen ophthalmologists were recruited to each examine 20 randomly selected OCT reports and evaluate the likelihood of glaucoma for each report on a scale of 0-100. Eye movements were collected using a Pupil Labs Core eye-tracker. Fixation heat maps were generated using fixation data. Results: A model trained with traditional saliency mapping resulted in a correlation coefficient (CC) value of 0.208, a Normalized Scanpath Saliency (NSS) value of 0.8172, a Kullback-Leibler (KLD) value of 2.573, and a Structural Similarity Index (SSIM) of 0.169. Conclusions: The TranSalNet model was able to predict fixations within certain regions of the OCT report with reasonable accuracy, but more data is needed to improve model accuracy. Future steps include increasing data collection, improving quality of data, and modifying the model architecture.
引用
收藏
页码:191 / 197
页数:7
相关论文
共 22 条
[1]  
ABRAMS LS, 1994, OPHTHALMOLOGY, V101, P1662
[2]   What Do Different Evaluation Metrics Tell Us About Saliency Models? [J].
Bylinskii, Zoya ;
Judd, Tilke ;
Oliva, Aude ;
Torralba, Antonio ;
Durand, Fredo .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (03) :740-757
[3]   PyGaze: An open-source, cross-platform toolbox for minimal-effort programming of eyetracking experiments [J].
Dalmaijer, Edwin S. ;
Mathot, Sebastiaan ;
Van der Stigchel, Stefan .
BEHAVIOR RESEARCH METHODS, 2014, 46 (04) :913-921
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]   End-to-End Saliency Mapping via Probability Distribution Prediction [J].
Jetley, Saumya ;
Murray, Naila ;
Vig, Eleonora .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5753-5761
[6]  
Jiang M, 2015, PROC CVPR IEEE, P1072, DOI 10.1109/CVPR.2015.7298710
[7]   Eye-movement study and human performance using telepathology virtual slides. Implications for medical education and differences with experience [J].
Krupinski, Elizabeth A. ;
Tillack, Allison A. ;
Richter, Lynne ;
Henderson, Jeffrey T. ;
Bhattacharyya, Achyut K. ;
Scott, Katherine M. ;
Graham, Anna R. ;
Descour, Michael R. ;
Davis, John R. ;
Weinstein, Ronald S. .
HUMAN PATHOLOGY, 2006, 37 (12) :1543-1556
[8]   Using gaze-tracking data and mixture distribution analysis to support a holistic model for the detection of cancers on mammograms [J].
Kundel, Harold L. ;
Nodine, Calvin F. ;
Krupinski, Elizabeth A. ;
Mello-Thoms, Claudia .
ACADEMIC RADIOLOGY, 2008, 15 (07) :881-886
[9]   State of the Art: Eye-Tracking Studies in Medical Imaging [J].
Leveque, Lucie ;
Bosmans, Hilde ;
Cockmartin, Lesley ;
Liu, Hantao .
IEEE ACCESS, 2018, 6 :37023-37034
[10]   Attention Based Glaucoma Detection: A Large-scale Database and CNN Model [J].
Li, Liu ;
Xu, Mai ;
Wang, Xiaofei ;
Jiang, Lai ;
Liu, Hanruo .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10563-10572