Comparison of multi-step forecasting methods for renewable energy

被引:1
|
作者
Dolgintseva, E. [1 ]
Wu, H. [1 ]
Petrosian, O. [1 ]
Zhadan, A. [1 ]
Allakhverdyan, A. [1 ]
Martemyanov, A. [1 ]
机构
[1] St Petersburg State Univ, Fac Appl Math & Control Proc, Univ skii Prospekt 35, St Petersburg 198504, Russia
关键词
Multi-step forecasting; Energy forecasting; Renewable energy; Neural network; Direct forecasting; Recursive forecasting; LightGBM; PREDICTION; RECURRENT;
D O I
10.1007/s12667-024-00656-w
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Multi-step forecasting influences systems of energy management a lot, but traditional methods are unable to obtain important feature information because of the complex composition of features, which causes prediction errors. There are numerous types of data to forecast in the energy sector; we present the following datasets for comparison in the paper: electricity demand, PV production, and heating, ventilation, and air conditioning load. For a detailed comparison, we took both classical and modern forecasting methods: Bayesian ridge, Ridge regression, Linear regression, ARD regression, LightGBM, RF, Bi-RNN, Bi-LSTM, Bi-GRU, and XGBoost.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Multi-step forecasting for long-memory processes
    Brodsky, J
    Hurvich, CM
    JOURNAL OF FORECASTING, 1999, 18 (01) : 59 - 75
  • [22] Multi-step Spatio-Temporal Temperature Forecasting
    Tekin, Selim F.
    Aksoy, Bilgin
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [23] Probabilistic Quantile Multi-step Forecasting of Energy Market Prices: A UK Case Study
    Tzallas, Petros
    Bezas, Napoleon
    Moschos, Ioannis
    Ioannidis, Dimosthenis
    Tzovaras, Dimitrios
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2022 IFIP WG 12.5 INTERNATIONAL WORKSHOPS, 2022, 652 : 301 - 313
  • [24] A multi-step predictor for dynamic system property forecasting
    Wang, Wilson
    Vrbanek, Josip, Jr.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2007, 18 (12) : 3673 - 3681
  • [25] Multi-step wind energy forecasting in the Mexican Isthmus using machine and deep learning
    Galarza-Chavez, Angel A.
    Martinez-Rodriguez, Jose L.
    Dominguez-Cruz, Rene Fernando
    Lopez-Garza, Esmeralda
    Rios-Alvarado, Ana B.
    ENERGY REPORTS, 2025, 13 : 1 - 15
  • [26] Multi-step forecasting using Echo State Networks
    Kountouriotis, PA
    Obradovic, D
    Goh, SL
    Mandic, DP
    Eurocon 2005: The International Conference on Computer as a Tool, Vol 1 and 2 , Proceedings, 2005, : 1574 - 1577
  • [27] A UNIFYING VIEW ON MULTI-STEP FORECASTING USING AN AUTOREGRESSION
    Franses, Philip Hans
    Legerstee, Rianne
    JOURNAL OF ECONOMIC SURVEYS, 2010, 24 (03) : 389 - 401
  • [28] Forecasting Workloads in Multi-step, Multi-route Business Processes
    Oh, Sechan
    Strong, Ray
    Chandra, Anca
    Blomberg, Jeanette
    2014 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2014), 2014, : 355 - 361
  • [29] Multi-Step Forecasting of Meteorological Time Series Using CNN-LSTM with Decomposition Methods
    Coutinho, Elua Ramos
    Madeira, Jonni G. F.
    Borges, Derick G. F.
    Springer, Marcus V.
    de Oliveira, Elizabeth M.
    Coutinho, Alvaro L. G. A.
    WATER RESOURCES MANAGEMENT, 2025,
  • [30] Inertial manifolds and linear multi-step methods
    Tony Shardlow
    Numerical Algorithms, 1997, 14 : 189 - 209