Comparison of multi-step forecasting methods for renewable energy

被引:1
|
作者
Dolgintseva, E. [1 ]
Wu, H. [1 ]
Petrosian, O. [1 ]
Zhadan, A. [1 ]
Allakhverdyan, A. [1 ]
Martemyanov, A. [1 ]
机构
[1] St Petersburg State Univ, Fac Appl Math & Control Proc, Univ skii Prospekt 35, St Petersburg 198504, Russia
关键词
Multi-step forecasting; Energy forecasting; Renewable energy; Neural network; Direct forecasting; Recursive forecasting; LightGBM; PREDICTION; RECURRENT;
D O I
10.1007/s12667-024-00656-w
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Multi-step forecasting influences systems of energy management a lot, but traditional methods are unable to obtain important feature information because of the complex composition of features, which causes prediction errors. There are numerous types of data to forecast in the energy sector; we present the following datasets for comparison in the paper: electricity demand, PV production, and heating, ventilation, and air conditioning load. For a detailed comparison, we took both classical and modern forecasting methods: Bayesian ridge, Ridge regression, Linear regression, ARD regression, LightGBM, RF, Bi-RNN, Bi-LSTM, Bi-GRU, and XGBoost.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Intelligent Neural Learning Models for Multi-step Wind Speed Forecasting in Renewable Energy Applications
    Deepa, S. N.
    Banerjee, Abhik
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (03) : 881 - 900
  • [2] Intelligent Neural Learning Models for Multi-step Wind Speed Forecasting in Renewable Energy Applications
    S. N. Deepa
    Abhik Banerjee
    Journal of Control, Automation and Electrical Systems, 2022, 33 : 881 - 900
  • [3] Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes
    Papacharalampous, Georgia
    Tyralis, Hristos
    Koutsoyiannis, Demetris
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (02) : 481 - 514
  • [4] Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes
    Georgia Papacharalampous
    Hristos Tyralis
    Demetris Koutsoyiannis
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 481 - 514
  • [5] Multi-step estimation for forecasting
    Clements, MP
    Hendry, DF
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 1996, 58 (04) : 657 - +
  • [6] A TEST FOR IMPROVED MULTI-STEP FORECASTING
    Haywood, John
    Wilson, Granville Tunnicliffe
    JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (06) : 682 - 707
  • [7] Multi-step forecasting in the presence of breaks
    Hannikainen, Jari
    JOURNAL OF FORECASTING, 2018, 37 (01) : 102 - 118
  • [8] Direct multi-step estimation and forecasting
    Chevillon, Guillaume
    JOURNAL OF ECONOMIC SURVEYS, 2007, 21 (04) : 746 - 785
  • [9] An Ensemble Approach for Multi-Step Ahead Energy Forecasting of Household Communities
    Pirbazari, Aida Mehdipour
    Sharma, Ekanki
    Chakravorty, Antorweep
    Elmenreich, Wilfried
    Rong, Chunming
    IEEE ACCESS, 2021, 9 : 36218 - 36240
  • [10] Multi-step methods for equations
    Kumar S.
    Sharma J.R.
    Argyros I.K.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1193 - 1215