Digital programming of reciprocity breaking in resonant piezoelectric metamaterials

被引:9
作者
Alshaqaq, Mustafa [1 ]
Sugino, Christopher [2 ]
Erturk, Alper [1 ]
机构
[1] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
关键词
WAVE; PROPAGATION;
D O I
10.1103/PhysRevResearch.5.043003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate a digitally controlled piezoelectric metamaterial waveguide leveraging resonant, spatiotemporally modulated synthetic impedance circuits for programmable reciprocity breaking. Piezoelectric metamaterials have effective stiffness that depends on the shunt circuitry connected to each unit cell, offering greatly increased design freedom over their purely mechanical counterparts. By connecting a digitally controlled synthetic impedance shunt circuit to each unit cell of the metamaterial domain, the effective stiffness is externally programmed according to a desired profile in space and time. Specifically, we present threefold capabilities in this electromechanical system: (1) smooth parameter modulation (no abrupt switching) through synthetic impedance circuits that eliminate cumbersome analog electrical components, (2) resonant electromechanical modulation in space and time so that one does not have to operate near the Bragg band gap, and (3) precise digital programming by numerically entering the space and time properties of the domain. We also demonstrate the frequency conversion in narrow-band excitation centered at a directional band gap. The experimental results are compared against high-fidelity multiphysics finite-element simulations, yielding excellent agreement for this class of digitally programmable nonreciprocal elastic metamaterials.
引用
收藏
页数:13
相关论文
共 46 条
[1]   Experimental Observation of Nonreciprocal Waves in a Resonant Metamaterial Beam [J].
Attarzadeh, M. A. ;
Callanan, J. ;
Nouh, M. .
PHYSICAL REVIEW APPLIED, 2020, 13 (02)
[2]   Phononic Crystal with Adaptive Connectivity [J].
Bergamini, Andrea ;
Delpero, Tommaso ;
De Simoni, Luca ;
Di Lillo, Luigi ;
Ruzzene, Massimo ;
Ermanni, Paolo .
ADVANCED MATERIALS, 2014, 26 (09) :1343-1347
[3]   Optical isolation based on space-time engineered asymmetric photonic band gaps [J].
Chamanara, Nima ;
Taravati, Sajjad ;
Deck-Leger, Zoe-Lise ;
Caloz, Christophe .
PHYSICAL REVIEW B, 2017, 96 (15)
[4]   Nonreciprocal Wave Propagation in a Continuum-Based Metamaterial with Space-Time Modulated Resonators [J].
Chen, Yangyang ;
Li, Xiaopeng ;
Nassar, Hussein ;
Norris, Andrew N. ;
Daraio, Chiara ;
Huang, Guoliang .
PHYSICAL REVIEW APPLIED, 2019, 11 (06)
[5]   Roton-like acoustical dispersion relations in 3D metamaterials [J].
Chen, Yi ;
Kadic, Muamer ;
Wegener, Martin .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials [J].
Chen, Zhaoxian ;
Peng, Yugui ;
Li, Haoxiang ;
Liu, Jingjing ;
Ding, Yujiang ;
Liang, Bin ;
Zhu, Xue-Feng ;
Lu, Yanqing ;
Cheng, Jianchun ;
Alu, Andrea .
SCIENCE ADVANCES, 2021, 7 (45)
[7]   Static non-reciprocity in mechanical metamaterials [J].
Coulais, Corentin ;
Sounas, Dimitrios ;
Alu, Andrea .
NATURE, 2017, 542 (7642) :461-+
[8]   Frequency-preserved non-reciprocal acoustic propagation in a granular chain [J].
Cui, Jian-Guo ;
Yang, Tianzhi ;
Chen, Li-Qun .
APPLIED PHYSICS LETTERS, 2018, 112 (18)
[9]  
Fleury R., 2015, Acoust. Today, V11, P14
[10]   Introduction to the special issue on non-reciprocal and topological wave phenomena in acoustics [J].
Fleury, Romain ;
Haberman, Michael R. ;
Huang, Guoliang ;
Norris, Andrew N. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 146 (01) :719-720