Semantic segmentation of longitudinal thermal images for identification of hot and cool spots in urban areas

被引:5
作者
Ramani, Vasantha [1 ]
Arjunan, Pandarasamy [1 ,2 ]
Poolla, Kameshwar [3 ]
Miller, Clayton [4 ]
机构
[1] Berkeley Educ Alliance Res Singapore, CREATE Tower 1 Create Way, Singapore 138602, Singapore
[2] Indian Inst Sci, Robert Bosch Ctr Cyber Phys Syst, Bengaluru 560012, Karnataka, India
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Natl Univ Singapore, Coll Design & Engn, Dept Built Environm, 4 Architecture Dr, Singapore 117566, Singapore
基金
新加坡国家研究基金会;
关键词
Semantic segmentation; Thermal imaging; Urban features; U-net; IR observatory; HEAT-ISLAND; GREEN; CLIMATE; PANELS;
D O I
10.1016/j.buildenv.2023.111112
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This work presents the analysis of semantically segmented, longitudinally, and spatially rich thermal images collected at the neighborhood scale to identify hot and cool spots in urban areas. An infrared observatory was operated over a few months to collect thermal images of different types of buildings on the educational campus of the National University of Singapore. A subset of the thermal image dataset was used to train state-of-the-art deep learning models to segment various urban features such as buildings, vegetation, sky, and roads. It was observed that the U-Net segmentation model with 'resnet34' CNN backbone has the highest mIoU score of 0.99 on the test dataset, compared to other models such as DeepLabV3, DeeplabV3+, FPN, and PSPnet. The masks generated using the segmentation models were then used to extract the temperature from thermal images and correct for differences in the emissivity of various urban features. Further, various statistical measures of the temperature extracted using the predicted segmentation masks are shown to closely match the temperature extracted using the ground truth masks. Finally, the masks were used to identify hot and cool spots in the urban feature at various instances of time. This forms one of the very few studies demonstrating the automated analysis of thermal images, which can be of potential use to urban planners for devising mitigation strategies for reducing the urban heat island (UHI) effect, improving building energy efficiency, and maximizing outdoor thermal comfort.
引用
收藏
页数:13
相关论文
共 57 条
[1]   Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry [J].
Adao, Telmo ;
Hruska, Jonas ;
Padua, Luis ;
Bessa, Jose ;
Peres, Emanuel ;
Morais, Raul ;
Sousa, Joaquim Joao .
REMOTE SENSING, 2017, 9 (11)
[2]   Influence of the urban microclimate in street canyons on the energy demand for space cooling and heating of buildings [J].
Allegrini, Jonas ;
Dorer, Viktor ;
Carmeliet, Jan .
ENERGY AND BUILDINGS, 2012, 55 :823-832
[3]  
Atif N., 2019, 2019 INT C ELECT ELE, P1
[4]  
Bhargavi K., 2014, INT J INNOV RES DEV, V3, P234, DOI DOI 10.1049/IET-IPR.2018.6150
[5]   Roles of horizontal and vertical tree canopy structure in mitigating daytime and nighttime urban heat island effects [J].
Chen, Jike ;
Jin, Shuangen ;
Du, Peijun .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 89
[6]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[7]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[8]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[9]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[10]   Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning [J].
Coutts, Andrew M. ;
Harris, Richard J. ;
Thu Phan ;
Livesley, Stephen J. ;
Williams, Nicholas S. G. ;
Tapper, Nigel J. .
REMOTE SENSING OF ENVIRONMENT, 2016, 186 :637-651