On some geometric results for generalized k-Bessel functions

被引:1
作者
Toklu, Evrim [1 ]
机构
[1] Agri Ibrahim Cecen Univ, Fac Educ, Dept Math, Agri, Turkiye
关键词
k-Bessel function; univalent; starlike and convex functions; alpha-convex functions; radius of uniform convexity; radius of alpha-convexity; CONVEXITY; RADIUS; STARLIKENESS;
D O I
10.1515/dema-2022-0235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this article is to present some novel geometric properties for three distinct normalizations of the generalized k k -Bessel functions, such as the radii of uniform convexity and of alpha -convexity. In addition, we show that the radii of alpha convexity remain in between the radii of starlikeness and convexity, in the case when alpha is an element of [ 0 , 1 ] , and they are decreasing with respect to the parameter alpha. The key tools in the proof of our main results are infinite product representations for normalized k k -Bessel functions and some properties of real zeros of these functions.
引用
收藏
页数:16
相关论文
共 32 条
[1]   Radii of uniform convexity of some special functions [J].
Aktas, Ibrahim ;
Toklu, Evrim ;
Orhan, Halit .
TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) :3010-3024
[2]  
[Anonymous], 2014, Math. Aterna.
[3]  
Baricz A, 2016, COMPUT METH FUNCT TH, V16, P93, DOI 10.1007/s40315-015-0123-1
[4]   THE RADIUS OF STARLIKENESS OF NORMALIZED BESSEL FUNCTIONS OF THE FIRST KIND [J].
Baricz, Arpad ;
Kupan, Pal Aurel ;
Szasz, Robert .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) :2019-2025
[5]   The radius of convexity of normalized Bessel functions of the first kind [J].
Baricz, Arpad ;
Szasz, Robert .
ANALYSIS AND APPLICATIONS, 2014, 12 (05) :485-509
[6]  
Bharati R., 1997, Tamkang J. Math, V28, P17, DOI DOI 10.5556/J.TKJM.28.1997.4330
[7]  
Brown R. K., 1960, Proc. Amer. Math. Soc., V11, P278, DOI DOI 10.2307/2032969
[8]   The radius of uniform convexity of Bessel functions [J].
Deniz, Erhan ;
Szasz, Robert .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) :572-588
[9]  
Diaz R., 2007, Divulgaciones Matematica, V15, P179
[10]   Feynman-Jackson integrals [J].
Diaz, Rafael ;
Pariguan, Eddy .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (03) :365-376