Algorithmic Aspects of Total Vertex-Edge Domination in Graphs

被引:0
作者
Kumar, H. Naresh [1 ]
Chellali, Mustapha [2 ]
Venkatakrishnan, Y. B. [1 ]
机构
[1] SASTRA Deemed Univ, Sch Arts Sci Humanities & Educ, Dept Math, Thanjavur, India
[2] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
关键词
Vertex-edge dominating set; total dominating set; total vertex-edge dominating set; chordal graphs; trees; NP-complete; APX-complete;
D O I
10.1142/S0129054123500247
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A vertex v of a simple graph G = (V,E) ve-dominates every edge incident to v as well as every edge adjacent to these incident edges. A set D subset of V is a total vertex-edge dominating set if every edge of E is ve-dominated by a vertex of D and the subgraph induced by D has no isolated vertex. The total vertex-edge domination problem is to find a total vertex-edge dominating set of minimum cardinality. In this paper, we first show that the total vertex-edge domination problem is NP-complete for chordal graphs. Then we provide a linear-time algorithm for this problem in trees. Moreover, we show that the minimum total vertex-edge domination problem cannot be approximated within (1 - epsilon)ln |V | for any epsilon > 0 unless NP subset of DTIME(|V |(O(loglog |V |))). Finally, we prove that the minimum total vertex-edge domination problem is APX-complete for bounded-degree graphs.
引用
收藏
页数:13
相关论文
共 11 条
  • [1] Total vertex-edge domination
    Boutrig, Razika
    Chellali, Mustapha
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) : 1820 - 1828
  • [2] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [3] Henning M. A., 2013, Springer Monographs in Mathematics, DOI [10.1007/978-1-4614-6525-6, DOI 10.1007/978-1-4614-6525-6]
  • [4] Algorithmic aspects of semitotal domination in graphs
    Henning, Michael A.
    Pandey, Arti
    [J]. THEORETICAL COMPUTER SCIENCE, 2019, 766 : 46 - 57
  • [5] Bounds on the vertex-edge domination number of a tree
    Krishnakumari, Balakrishna
    Venkatakrishnan, Yanamandram B.
    Krzywkowski, Marcin
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) : 363 - 366
  • [6] Lewis J. R., 2007, THESIS CLEMSON U
  • [7] Lewis J, 2010, UTILITAS MATHEMATICA, V81, P193
  • [8] OPTIMIZATION, APPROXIMATION, AND COMPLEXITY CLASSES
    PAPADIMITRIOU, CH
    YANNAKAKIS, M
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1991, 43 (03) : 425 - 440
  • [9] Peters J. W., 1986, THESIS CLEMSON U
  • [10] Algorithmic aspects of k-tuple total domination in graphs
    Pradhan, D.
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (21) : 816 - 822