Analytical treatment on the nonlinear Schriidinger equation with the parabolic law

被引:9
作者
Han, Xiang-Lin [1 ]
Hashemi, Mir Sajjad [2 ]
Samei, Mohammad Esmael [3 ]
Akgul, Ali [4 ,5 ,6 ]
El Din, Sayed M. [7 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[2] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[3] Bu Ali Sina Univ, Dept Math, Faulty Basic Sci, Hamadan 6517838695, Iran
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[5] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[6] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd,Mersin 10, TR-99138 Nicosia, Turkiye
[7] Future Univ Egypt, Fac Engn, Ctr Res, New Cairo 11835, Egypt
关键词
Schriidinger problem; Parabolic law; First integral; Soliton solution; Reduction method; SCHRODINGER-EQUATION; SYMMETRIES;
D O I
10.1016/j.rinp.2023.106544
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The objective of this study is to investigate a few solutions to the nonlinear Schriidinger problem with parabolic law. The first integral and exact solutions for the reduced ODE of the model under consideration are extracted using Nucci's reduction approach. Finally, using the efficient and effective solutions technique, we display density plots and 2D, 3D plots for the suggested governing model.
引用
收藏
页数:11
相关论文
共 36 条
[1]  
Ablowitz M.J., 2011, NONLINEAR DISPERSIVE, V47, DOI DOI 10.1017/CBO9780511998324
[2]   Triki-Biswas model: Its symmetry reduction, Nucci's reduction and conservation laws [J].
Akbulut, A. ;
Mirzazadeh, M. ;
Hashemi, M. S. ;
Hosseini, K. ;
Salahshour, S. ;
Park, C. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (07)
[3]   Optical solitons for weakly nonlocal Schrodinger equation with parabolic law nonlinearity and external potential [J].
Akinyemi, Lanre ;
Senol, Mehmet ;
Mirzazadeh, Mohammad ;
Eslami, Mostafa .
OPTIK, 2021, 230
[4]   Optical soliton solutions to the generalized nonautonomous nonlinear Schrodinger equations in optical fibers via the sine-Gordon expansion method [J].
Ali, Khaled K. ;
Wazwaz, Abdul-Majid ;
Osman, M. S. .
OPTIK, 2020, 208
[5]   A reproducing kernel Hilbert space method for nonlinear partial differential equations: applications to physical equations [J].
Attia, Nourhane ;
Akgul, Ali .
PHYSICA SCRIPTA, 2022, 97 (10)
[6]   Analytical treatment of regularized Prabhakar fractional differential equations by invariant subspaces [J].
Chu, Y. -M. ;
Inc, Mustafa ;
Hashemi, M. S. ;
Eshaghi, S. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06)
[7]   SOLUTION OF THE SCHRODINGER-EQUATION BY A SPECTRAL METHOD [J].
FEIT, MD ;
FLECK, JA ;
STEIGER, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 47 (03) :412-433
[8]   A new application of the Legendre reproducing kernel method [J].
Foroutan, Mohammad Reza ;
Hashemi, Mir Sajjad ;
Gholizadeh, Leila ;
Akgul, Ali ;
Jarad, Fahd .
AIMS MATHEMATICS, 2022, 7 (06) :10651-10670
[9]   LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .1. THE SYMMETRY GROUP AND ITS SUBGROUPS [J].
GAGNON, L ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1493-1511
[10]   Construction of exact solutions for fractional order differential equations by the invariant subspace method [J].
Gazizov, R. K. ;
Kasatkin, A. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :576-584