Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations

被引:4
作者
Xu, Mingzhou [1 ]
机构
[1] Jingdezhen Ceram Univ, Sch Informat Engn, Jingdezhen 333403, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
关键词
complete moment convergence; complete convergence; negatively dependent random variables; sub-linear expectations; INDEPENDENT RANDOM-VARIABLES; LARGE NUMBERS; LAW; INEQUALITIES;
D O I
10.3934/math.2023871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that {ai, -oo < i < oo} is an absolutely summable set of real numbers, {Yi, -oo < i < oo} is a subset of identically distributed, negatively dependent random variables under sub-linear expectations. Here, we get complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the partial sums of moving average processes {Xn = sigma oo i=-oo aiYi+n,n >= 1} produced by {Yi, -oo < i < oo} of identically distributed, negatively dependent random variables under sub-linear expectations, complementing the relevant results in probability space.
引用
收藏
页码:17067 / 17080
页数:14
相关论文
共 25 条
[1]   Limiting behaviour of moving average processes under φ-mixing assumption [J].
Chen, Pingyan ;
Hu, Tien-Chung ;
Volodin, Andrei .
STATISTICS & PROBABILITY LETTERS, 2009, 79 (01) :105-111
[2]   Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations [J].
Chen, Xiaocong ;
Wu, Qunying .
AIMS MATHEMATICS, 2022, 7 (06) :9694-9715
[3]   Strong laws of large numbers for sub-linear expectations [J].
Chen ZengJing .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (05) :945-954
[4]  
Chow Y S., 1988, Bull. Institute Math, V16, P177
[5]  
[高付清 GAO FuQing], 2011, [中国科学. 数学, Scientia Sinica Mathematica], V41, P337
[6]   Complete Moment Convergence for the Dependent Linear Processes with Random Coefficients [J].
Hosseini, Seyed Mohammad ;
Nezakati, Ahmad .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (08) :1321-1333
[7]   COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS [J].
HSU, PL ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) :25-31
[9]   Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables [J].
Meng, Bing ;
Wang, Dingcheng ;
Wu, Qunying .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (12) :3847-3863
[10]  
Peng S., 2019, NONLINEAR EXPECTATIO, DOI DOI 10.1007/978-3-662-59903-7