Deep learning models to predict the editing efficiencies and outcomes of diverse base editors

被引:35
作者
Kim, Nahye [1 ,2 ]
Choi, Sungchul [1 ]
Kim, Sungjae [3 ]
Song, Myungjae [1 ,2 ]
Seo, Jung Hwa [4 ]
Min, Seonwoo [5 ]
Park, Jinman [1 ,2 ]
Cho, Sung-Rae [2 ,4 ,6 ,7 ]
Kim, Hyongbum Henry [1 ,2 ,8 ,9 ,10 ,11 ,12 ,13 ]
机构
[1] Yonsei Univ, Dept Pharmacol, Coll Med, Seoul, South Korea
[2] Yonsei Univ, Grad Sch Med Sci, Brain Korea Project 21, Coll Med, Seoul, South Korea
[3] Macrogen, Precis Med Inst, Seoul, South Korea
[4] Yonsei Univ, Dept & Res Inst Rehabil Med, Coll Med, Seoul, South Korea
[5] LG AI Res, Seoul, South Korea
[6] Yonsei Univ, Grad Program Biomed Engn, Coll Med, Seoul, South Korea
[7] Yonsei Univ, Rehabil Inst Neuromuscular Dis, Coll Med, Seoul, South Korea
[8] Yonsei Univ, Grad Program Nanosci & Technol, Seoul, South Korea
[9] Inst Basic Sci IBS, Ctr Nanomed, Seoul, South Korea
[10] Yonsei Univ, Yonsei IBS Inst, Seoul, South Korea
[11] Yonsei Univ, Severance Biomed Sci Inst, Coll Med, Seoul, South Korea
[12] Yonsei Univ, Inst Immunol & Immunol Dis, Coll Med, Seoul, South Korea
[13] Univ Calif San Francisco, Dept Otolaryngol, San Francisco, CA 94118 USA
基金
新加坡国家研究基金会;
关键词
CRISPR-CAS9; NUCLEASES; GENOMIC DNA; VARIANTS; PCSK9;
D O I
10.1038/s41587-023-01792-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The best base editor for specific applications is predicted with a deep learning model. Applications of base editing are frequently restricted by the requirement for a protospacer adjacent motif (PAM), and selecting the optimal base editor (BE) and single-guide RNA pair (sgRNA) for a given target can be difficult. To select for BEs and sgRNAs without extensive experimental work, we systematically compared the editing windows, outcomes and preferred motifs for seven BEs, including two cytosine BEs, two adenine BEs and three C center dot G to G center dot C BEs at thousands of target sequences. We also evaluated nine Cas9 variants that recognize different PAM sequences and developed a deep learning model, DeepCas9variants, for predicting which variants function most efficiently at sites with a given target sequence. We then develop a computational model, DeepBE, that predicts editing efficiencies and outcomes of 63 BEs that were generated by incorporating nine Cas9 variants as nickase domains into the seven BE variants. The predicted median efficiencies of BEs with DeepBE-based design were 2.9- to 20-fold higher than those of rationally designed SpCas9-containing BEs.
引用
收藏
页码:484 / 497
页数:38
相关论文
共 53 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9 [J].
Anders, Carolin ;
Bargsten, Katja ;
Jinek, Martin .
MOLECULAR CELL, 2016, 61 (06) :895-902
[3]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[4]   Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning [J].
Arbab, Mandana ;
Shen, Max W. ;
Mok, Beverly ;
Wilson, Christopher ;
Matuszek, Zaneta ;
Cassa, Christopher A. ;
Liu, David R. .
CELL, 2020, 182 (02) :463-+
[5]   Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes:: Correlation with mutation spectra in vivo [J].
Beale, RCL ;
Petersen-Mahrt, SK ;
Watt, IN ;
Harris, RS ;
Rada, C ;
Neuberger, MS .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 337 (03) :585-596
[6]   In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing [J].
Chadwick, Alexandra C. ;
Wang, Xiao ;
Musunuru, Kiran .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2017, 37 (09) :1741-+
[7]   A Cas9 with PAM recognition for adenine dinucleotides [J].
Chatterjee, Pranam ;
Lee, Jooyoung ;
Nip, Lisa ;
Koseki, Sabrina R. T. ;
Tysinger, Emma ;
Sontheimer, Erik J. ;
Jacobson, Joseph M. ;
Jakimo, Noah .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]  
Chatterjee P, 2020, NAT BIOTECHNOL, V38, P1154, DOI 10.1038/s41587-020-0517-0
[9]   Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins [J].
Chen, Liwei ;
Park, Jung Eun ;
Paa, Peter ;
Rajakumar, Priscilla D. ;
Prekop, Hong-Ting ;
Chew, Yi Ting ;
Manivannan, Swathi N. ;
Chew, Wei Leong .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   CRISPResso2 provides accurate and rapid genome editing sequence analysis [J].
Clement, Kendell ;
Rees, Holly ;
Canver, Matthew C. ;
Gehrke, Jason M. ;
Farouni, Rick ;
Hsu, Jonathan Y. ;
Cole, Mitchel A. ;
Liu, David R. ;
Joung, J. Keith ;
Bauer, Daniel E. ;
Pinello, Luca .
NATURE BIOTECHNOLOGY, 2019, 37 (03) :224-226