DIRICHLET PROBLEMS FOR SECOND ORDER LINEAR ELLIPTIC EQUATIONS WITH L1-DATA

被引:2
作者
Kim, H. [1 ]
Oh, J. I. S. U. [2 ]
机构
[1] Sogang Univ, Dept Math, Seoul, South Korea
[2] North Carolina State Univ, Dept Stat, Raleigh, NC USA
基金
新加坡国家研究基金会;
关键词
Dirichlet problems; elliptic equations; drifts; existence; uniqueness; DIVERGENCE FORM; INTERPOLATION; OPERATORS;
D O I
10.3934/cpaa.2023051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
-div (ADu) + div (ub) + cu = div F in S2 and u = 0 on partial differential S2, where A = [aij] is bounded, uniformly elliptic, and of vanishing mean oscillation (VMO). The main purpose of this paper is to study unique solvability for both problems with L1-data. We prove that if S2 is of class C1, div A + b E Ln,1(S2; Rn), c E Ln2,1(S2) n Ls(S2) for some 1 < s < 32 , and c > 0 in S2, then for each f E L1(S2), there exists a unique weak solution in 1, n n-1 ,infinity W (S2) of the first problem. Moreover, under the additional condition that S2 is of class C1,1 and c E Ln,1(S2), we show that for each FE L1(S2; Rn),
引用
收藏
页码:1899 / 1917
页数:19
相关论文
共 25 条
[21]  
Krylov N V., 2008, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Vvol 96
[22]   ELLIPTIC EQUATIONS IN DIVERGENCE FORM WITH DRIFTS IN L2 [J].
Kwon, Hyunwoo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (08) :3415-3429
[23]   Existence and uniqueness of weak solution in W1,2+ε for elliptic equations with drifts in weak-Ln spaces [J].
Kwon, Hyunwoo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
[24]   CONVOLUTION OPERATORS AND (P, Q) SPACES [J].
ONEIL, R .
DUKE MATHEMATICAL JOURNAL, 1963, 30 (01) :129-&
[25]  
Stein M. E., 1970, Singular integrals and differentiability properties of functions