Spatial Profile of Tumor Microenvironment in PD-L1-Negative and PD-L1-Positive Triple-Negative Breast Cancer

被引:4
作者
Tashireva, Liubov A. [1 ,2 ]
Kalinchuk, Anna Yu. [1 ]
Gerashchenko, Tatiana S. [3 ]
Menyailo, Maksim [3 ]
Khozyainova, Anna [3 ]
Denisov, Evgeniy V. [3 ]
Perelmuter, Vladimir M. [2 ]
机构
[1] Russian Acad Sci, Canc Res Inst, Tomsk Natl Res Med Ctr, Lab Mol Therapy Canc, Tomsk 634009, Russia
[2] Russian Acad Sci, Canc Res Inst, Tomsk Natl Res Med Ctr, Dept Gen & Mol Pathol, Tomsk 634009, Russia
[3] Russian Acad Sci, Canc Res Inst, Tomsk Natl Res Med Ctr, Lab Canc Progress Biol, Tomsk 634009, Russia
基金
俄罗斯科学基金会;
关键词
triple-negative breast cancer; tumor microenvironment; immune checkpoint inhibitors; PD-L1; spatial transcriptomic analysis;
D O I
10.3390/ijms24021433
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The problem of finding more precise stratification criteria for identifying the cohort of patients who would obtain the maximum benefit from immunotherapy is acute in modern times. In our study were enrolled 18 triple-negative breast cancer patients. The Ventana SP142 test was used for PD-L1 detection. Spatial transcriptomic analysis by 10x Genomics was used to compare PD-L1-positive and PD-L1-negative tumors. The seven-color multiplex immunofluorescence (by Akoya) was used for the detection of the type of cells that carried the PD1 receptor and the PD-L1 ligand. Using pathway analysis, we showed that PD-L1-positive tumors demonstrate signatures of a cell response to cytokines, among others, and PD-L1-negative tumors demonstrate signatures of antigen presentation. PD-L1-positive and PD-L1-negative tumors have different tumor microenvironment (TME) compositions according to CIBERSORT analysis. Multiplex immunohistochemistry (IHC) confirmed the prevalence of PD1-negative M2 macrophages and PD1-negative T lymphocytes in PD-L1-positive tumors. PD-L1-positive tumors are not characterized by direct contact between cells carrying the PD1 receptor and the PD-L1 ligand. So, the absence of specific immune reactions against the tumor, predominance of pro-tumor microenvironment, and rare contact between PDL1 and PD1-positive cells may be the potential reasons for the lack of an immune checkpoint inhibitor (ICI) effect in triple-negative breast cancer patients.
引用
收藏
页数:13
相关论文
共 18 条
[1]   Targeted Treatment for High-Risk Early-Stage Triple-Negative Breast Cancer: Spotlight on Pembrolizumab [J].
Bagegni, Nusayba A. ;
Davis, Andrew A. ;
Clifton, Katherine K. ;
Ademuyiwa, Foluso O. .
BREAST CANCER-TARGETS AND THERAPY, 2022, 14 :113-123
[2]  
Chen BB, 2018, METHODS MOL BIOL, V1711, P243, DOI 10.1007/978-1-4939-7493-1_12
[3]   Next generation sequencing of PD-L1 for predicting response to immune checkpoint inhibitors [J].
Conroy, Jeffrey M. ;
Pabla, Sarabjot ;
Nesline, Mary K. ;
Glenn, Sean T. ;
Papanicolau-Sengos, Antonios ;
Burgher, Blake ;
Andreas, Jonathan ;
Giamo, Vincent ;
Wang, Yirong ;
Lenzo, Felicia L. ;
Bshara, Wiam ;
Khalil, Maya ;
Dy, Grace K. ;
Madden, Katherine G. ;
Shirai, Keisuke ;
Dragnev, Konstantin ;
Tafe, Laura J. ;
Zhu, Jason ;
Labriola, Matthew ;
Marin, Daniele ;
McCall, Shannon J. ;
Clarke, Jeffrey ;
George, Daniel J. ;
Zhang, Tian ;
Zibelman, Matthew ;
Ghatalia, Pooja ;
Araujo-Fernandez, Isabel ;
de la Cruz-Merino, Luis ;
Singavi, Arun ;
George, Ben ;
MacKinnon, Alexander C. ;
Thompson, Jonathan ;
Singh, Rajbir ;
Jacob, Robin ;
Kasuganti, Deepa ;
Shah, Neel ;
Day, Roger ;
Galluzzi, Lorenzo ;
Gardner, Mark ;
Morrison, Carl .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7
[4]   Clinicopathological Features of Triple-Negative Breast Cancer Epigenetic Subtypes [J].
DiNome, Maggie L. ;
Orozco, Javier I. J. ;
Matsuba, Chikako ;
Manughian-Peter, Ayla O. ;
Ensenyat-Mendez, Miquel ;
Chang, Shu-Ching ;
Jalas, John R. ;
Salomon, Matthew P. ;
Marzese, Diego M. .
ANNALS OF SURGICAL ONCOLOGY, 2019, 26 (10) :3344-3353
[5]   Tumor-Associated CD 163+ M2 Macrophage Infiltration is Highly Associated with PD-L1 Expression in Cervical Cancer [J].
Guo, Fan ;
Feng, Yang-chun ;
Zhao, Gang ;
Zhang, Ran ;
Cheng, Zhen-zhen ;
Kong, Wei-na ;
Wu, Hui-li ;
Xu, Bin ;
Lv, Xiang ;
Ma, Xiu-min .
CANCER MANAGEMENT AND RESEARCH, 2020, 12 :5831-5843
[6]   PD-1: A Driver or Passenger of T Cell Exhaustion? [J].
He, Xing ;
Xu, Chenqi .
MOLECULAR CELL, 2020, 77 (05) :930-931
[7]   Unraveling Heterogeneity of Tumor Cells and Microenvironment and Its Clinical Implications for Triple Negative Breast Cancer [J].
Jiang, Ke ;
Dong, Mengting ;
Li, Chunyang ;
Sheng, Jiayu .
FRONTIERS IN ONCOLOGY, 2021, 11
[8]   Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy [J].
Johnson, Douglas B. ;
Estrada, Monica V. ;
Salgado, Roberto ;
Sanchez, Violeta ;
Doxie, Deon B. ;
Opalenik, Susan R. ;
Vilgelm, Anna E. ;
Feld, Emily ;
Johnson, Adam S. ;
Greenplate, Allison R. ;
Sanders, Melinda E. ;
Lovly, Christine M. ;
Frederick, Dennie T. ;
Kelley, Mark C. ;
Richmond, Ann ;
Irish, Jonathan M. ;
Shyr, Yu ;
Sullivan, Ryan J. ;
Puzanov, Igor ;
Sosman, Jeffrey A. ;
Balko, Justin M. .
NATURE COMMUNICATIONS, 2016, 7
[9]   Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo [J].
Karn, T. ;
Denkert, C. ;
Weber, K. E. ;
Holtrich, U. ;
Hanusch, C. ;
Sinn, B., V ;
Higgs, B. W. ;
Jank, P. ;
Sinn, H. P. ;
Huober, J. ;
Becker, C. ;
Blohmer, J-U ;
Marme, F. ;
Schmitt, W. D. ;
Wu, S. ;
van Mackelenbergh, M. ;
Mueller, V ;
Schem, C. ;
Stickeler, E. ;
Fasching, P. A. ;
Jackisch, C. ;
Untch, M. ;
Schneeweiss, A. ;
Loibl, S. .
ANNALS OF ONCOLOGY, 2020, 31 (09) :1216-1222
[10]   PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition [J].
Li, Kaitao ;
Yuan, Zhou ;
Lyu, Jintian ;
Ahn, Eunseon ;
Davis, Simon J. ;
Ahmed, Rafi ;
Zhu, Cheng .
NATURE COMMUNICATIONS, 2021, 12 (01)