LGP-VEC: A Vectorial Linear Genetic Programming for Symbolic Regression

被引:0
|
作者
Gligorovski, Nikola [1 ]
Zhong, Jinghui [1 ]
机构
[1] South China Univ Technol, Guangzhou, Guangdong, Peoples R China
来源
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION | 2023年
基金
中国国家自然科学基金;
关键词
Vectorial linear genetic programming; symbolic regression; benchmark suite;
D O I
10.1145/3583133.3590695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic regression (SR) is a well-known regression problem, that aims to find a symbolic expression that best fits a given dataset. Linear Genetic Programming (LGP) is a good and powerful candidate for solving symbolic regression problems. However, current LGPs for SR only focus on finding scalar-valued functions, and limited work has been done on finding vector-valued functions with vectorial-based LGP. In addition, a comprehensive dataset for testing vectorial-based GP is still lacking in the literature. To this end, we propose a new extensive benchmark suite for vectorial symbolic regression. Furthermore, we propose a new vectorial LGP algorithm for symbolic regression, which directly deals with high dimensional data using vectorial representation and operations. Experimental results show that the proposed algorithm outperforms another recently published vectorial GP method on the benchmark suite for vector-valued functions and that it also generalizes better on unseen data.
引用
收藏
页码:579 / 582
页数:4
相关论文
共 50 条
  • [31] BASELINE GENETIC PROGRAMMING: SYMBOLIC REGRESSION ON BENCHMARKS FOR SENSORY EVALUATION MODELING
    Noel, Pierre-Luc
    Veeramachaneni, Kalyan
    O'Reilly, Una-May
    GENETIC PROGRAMMING THEORY AND PRACTICE IX, 2011, : 173 - 194
  • [32] Parsimony Measures in Multi-objective Genetic Programming for Symbolic Regression
    Burlacu, Bogdan
    Kronberger, Gabriel
    Kommenda, Michael
    Affenzeller, Michael
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 338 - 339
  • [33] Parallel implementation of a genetic-programming based tool for symbolic regression
    Salhi, A
    Glaser, H
    De Roure, D
    INFORMATION PROCESSING LETTERS, 1998, 66 (06) : 299 - 307
  • [34] A Hybrid Grammar-based Genetic Programming for Symbolic Regression Problems
    Motta, Flavio A. A.
    de Freitas, Joao M.
    de Souza, Felipe R.
    Bernardino, Heder S.
    de Oliveira, Itamar L.
    Barbosa, Helio J. C.
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2097 - 2104
  • [35] Genetic programming performance prediction and its application for symbolic regression problems
    Astarabadi, Samaneh Sadat Mousavi
    Ebadzadeh, Mohammad Mehdi
    INFORMATION SCIENCES, 2019, 502 : 418 - 433
  • [36] Speeding up Genetic Programming Based Symbolic Regression Using GPUs
    Zhang, Rui
    Lensen, Andrew
    Sun, Yanan
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2022, 13629 : 519 - 533
  • [37] Active Learning Informs Symbolic Regression Model Development in Genetic Programming
    Haut, Nathan
    Punch, Bill
    Banzhaf, Wolfgang
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 587 - 590
  • [38] Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression
    Liu, Dazhuang
    Virgolin, Marco
    Alderliesten, Tanja
    Bosman, Peter A. N.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 973 - 981
  • [39] Denoising Autoencoder Genetic Programming for Real-World Symbolic Regression
    Wittenberg, David
    Rothlauf, Franz
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 612 - 614
  • [40] Improving Generalisation of Genetic Programming for Symbolic Regression with Structural Risk Minimisation
    Chen, Qi
    Xue, Bing
    Shang, Lin
    Zhang, Mengjie
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 709 - 716