LGP-VEC: A Vectorial Linear Genetic Programming for Symbolic Regression

被引:0
|
作者
Gligorovski, Nikola [1 ]
Zhong, Jinghui [1 ]
机构
[1] South China Univ Technol, Guangzhou, Guangdong, Peoples R China
来源
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION | 2023年
基金
中国国家自然科学基金;
关键词
Vectorial linear genetic programming; symbolic regression; benchmark suite;
D O I
10.1145/3583133.3590695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic regression (SR) is a well-known regression problem, that aims to find a symbolic expression that best fits a given dataset. Linear Genetic Programming (LGP) is a good and powerful candidate for solving symbolic regression problems. However, current LGPs for SR only focus on finding scalar-valued functions, and limited work has been done on finding vector-valued functions with vectorial-based LGP. In addition, a comprehensive dataset for testing vectorial-based GP is still lacking in the literature. To this end, we propose a new extensive benchmark suite for vectorial symbolic regression. Furthermore, we propose a new vectorial LGP algorithm for symbolic regression, which directly deals with high dimensional data using vectorial representation and operations. Experimental results show that the proposed algorithm outperforms another recently published vectorial GP method on the benchmark suite for vector-valued functions and that it also generalizes better on unseen data.
引用
收藏
页码:579 / 582
页数:4
相关论文
共 50 条
  • [1] Investigation of Linear Genetic Programming Techniques for Symbolic Regression
    Dal Piccol Sotto, Leo Francoso
    de Melo, Vinicius Veloso
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 146 - 151
  • [2] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [3] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [4] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [5] The Inefficiency of Genetic Programming for Symbolic Regression
    Kronberger, Gabriel
    de Franca, Fabricio Olivetti
    Desmond, Harry
    Bartlett, Deaglan J.
    Kammerer, Lukas
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 273 - 289
  • [6] Lifetime Adaptation in Genetic Programming for the Symbolic Regression
    Merta, Jan
    Brandejsky, Tomas
    COMPUTATIONAL STATISTICS AND MATHEMATICAL MODELING METHODS IN INTELLIGENT SYSTEMS, VOL. 2, 2019, 1047 : 339 - 346
  • [7] Symbol Graph Genetic Programming for Symbolic Regression
    Song, Jinglu
    Lu, Qiang
    Tian, Bozhou
    Zhang, Jingwen
    Luo, Jake
    Wang, Zhiguang
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 221 - 237
  • [8] Genetic programming with separability detection for symbolic regression
    Liu, Wei-Li
    Yang, Jiaquan
    Zhong, Jinghui
    Wang, Shibin
    COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (03) : 1185 - 1194
  • [9] Genetic Programming with Rademacher Complexity for Symbolic Regression
    Raymond, Christian
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2657 - 2664
  • [10] Memetic Semantic Genetic Programming for Symbolic Regression
    Leite, Alessandro
    Schoenauer, Marc
    GENETIC PROGRAMMING, EUROGP 2023, 2023, 13986 : 198 - 212