The QLY least-squares and the QLY least-squares minimal-norm of linear dual least squares problems

被引:15
作者
Wang, Hongxing [1 ]
Cui, Chong [1 ]
Wei, Yimin [2 ,3 ,4 ,5 ]
机构
[1] Guangxi Minzu Univ, Coll Math & Phys, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[5] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual matrix; dual Moore-Penrose generalized inverse; QLY total order; QLY least-squares; QLY least-squares minimal-norm;
D O I
10.1080/03081087.2023.2223348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Q In this paper, we define a QLY total order =(Q) over D-m to compare the magnitude of dual vectors. Then we consider the QLY least-squares problem and give its compact formula. Meanwhile, by comparing with a least-squares and the least-squares minimal-norm solutions, we can investigate a QLY least-squares and the QLY least-squares minimal-norm of linear dual least-squares problems. In particular, in the presence of a least-squares solution, we can get a QLY least-squares solution to be more accurate than a least-squares solution under the QLY total order.
引用
收藏
页码:1985 / 2002
页数:18
相关论文
共 26 条
[1]   MULTIBODY DYNAMICS - A FORMULATION USING KANE METHOD AND DUAL VECTORS [J].
AGRAWAL, SK .
JOURNAL OF MECHANICAL DESIGN, 1993, 115 (04) :833-838
[2]  
[Anonymous], 1979, Theoretical Kinematics
[3]   Reflections Over the Dual Ring-Applications to Kinematic Synthesis [J].
Belzile, Bruno ;
Angeles, Jorge .
JOURNAL OF MECHANICAL DESIGN, 2019, 141 (07)
[4]  
Clifford William., 1873, P LOND MATH SOC, V4, P381, DOI DOI 10.1112/PLMS/S1-4.1.381
[5]   Higher-Order Relative Kinematics of Rigid Body Motions: A Dual Lie Algebra Approach [J].
Condurache, Daniel .
ADVANCES IN ROBOT KINEMATICS 2018, 2019, 8 :83-91
[6]   On generalized inverses of dual matrices [J].
de Falco, Domenico ;
Pennestri, Ettore ;
Udwadia, Firdaus E. .
MECHANISM AND MACHINE THEORY, 2018, 123 :89-106
[7]  
Golub G.H., 2013, Matrix Computations, Fourth Eidition
[8]  
Gruescu, 2020, INT C MECH MECH TRAN, V88, P104
[9]   Generalizations of singular value decomposition to dual-numbered matrices [J].
Gutin, Ran .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20) :5107-5145
[10]   KINEMATICS AND STATICS INCLUDING FRICTION IN SINGLE-LOOP MECHANISMS BY SCREW CALCULUS AND DUAL VECTORS [J].
KELER, ML .
JOURNAL OF ENGINEERING FOR INDUSTRY-TRANSACTIONS OF THE ASME, 1973, 95 (02) :471-480