scDFC: A deep fusion clustering method for single-cell RNA-seq data

被引:34
作者
Hu, Dayu [1 ]
Liang, Ke [1 ]
Zhou, Sihang [2 ]
Tu, Wenxuan [3 ]
Liu, Meng [1 ]
Liu, Xinwang [1 ]
机构
[1] Natl Univ Def Technol, Changsha, Peoples R China
[2] Natl Univ Def Technol, Sch Comp, Changsha, Peoples R China
[3] Natl Univ Def Technol, Coll Comp, Changsha, Peoples R China
基金
国家重点研发计划;
关键词
single cell transcriptomics; clustering; fusion network; deep learning; TRANSCRIPTOMIC ANALYSIS; HETEROGENEITY; DIVERSITY;
D O I
10.1093/bib/bbad216
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Clustering methods have been widely used in single-cell RNA-seq data for investigating tumor heterogeneity. Since traditional clustering methods fail to capture the high-dimension methods, deep clustering methods have drawn increasing attention these years due to their promising strengths on the task. However, existing methods consider either the attribute information of each cell or the structure information between different cells. In other words, they cannot sufficiently make use of all of this information simultaneously. To this end, we propose a novel single-cell deep fusion clustering model, which contains two modules, i.e. an attributed feature clustering module and a structure-attention feature clustering module. More concretely, two elegantly designed autoencoders are built to handle both features regardless of their data types. Experiments have demonstrated the validity of the proposed approach, showing that it is efficient to fuse attributes, structure, and attention information on single-cell RNA-seq data. This work will be further beneficial for investigating cell subpopulations and tumor microenvironment. The Python implementation of our work is now freely available at .
引用
收藏
页数:9
相关论文
共 37 条
[1]   DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning [J].
Angermueller, Christof ;
Lee, Heather J. ;
Reik, Wolf ;
Stegle, Oliver .
GENOME BIOLOGY, 2017, 18
[2]  
Azizi E, 2017, Genomics and Computational Biology, V3, P46, DOI [10.18547/gcb.2017.vol3.iss1.e46, DOI 10.18547/GCB.2017.VOL3.ISS1.E46]
[3]   The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing [J].
Bjorklund, Asa K. ;
Forkel, Marianne ;
Picelli, Simone ;
Konya, Viktoria ;
Theorell, Jakob ;
Friberg, Danielle ;
Sandberg, Rickard ;
Mjosberg, Jenny .
NATURE IMMUNOLOGY, 2016, 17 (04) :451-+
[4]   Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing [J].
Blase, Fernando H. ;
Cao, Xiaoyi ;
Zhong, Sheng .
GENOME RESEARCH, 2014, 24 (11) :1787-1796
[5]   Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity [J].
Brown, Chrysothemis C. ;
Gudjonson, Herman ;
Pritykin, Yuri ;
Deep, Deeksha ;
Lavallee, Vincent-Philippe ;
Mendoza, Alejandra ;
Fromme, Rachel ;
Mazutis, Linas ;
Ariyan, Charlotte ;
Leslie, Christina ;
Pe'er, Dana ;
Rudensky, Alexander Y. .
CELL, 2019, 179 (04) :846-+
[6]   scGAC: a graph attentional architecture for clustering single-cell RNA-seq data [J].
Cheng, Yi ;
Ma, Xiuli .
BIOINFORMATICS, 2022, 38 (08) :2187-2193
[7]   A survey of human brain transcriptome diversity at the single cell level [J].
Darmanis, Spyros ;
Sloan, Steven A. ;
Zhang, Ye ;
Enge, Martin ;
Caneda, Christine ;
Shuer, Lawrence M. ;
Gephart, Melanie G. Hayden ;
Barres, Ben A. ;
Quake, Stephen R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (23) :7285-7290
[8]   Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage [J].
Dulken, Ben W. ;
Leeman, Dena S. ;
Boutet, Stephane C. ;
Hebestreit, Katja ;
Brunet, Anne .
CELL REPORTS, 2017, 18 (03) :777-790
[9]   Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns [J].
Enge, Martin ;
Arda, Efsun ;
Mignardi, Marco ;
Beausang, John ;
Bottino, Rita ;
Kim, Seung K. ;
Quake, Stephen R. .
CELL, 2017, 171 (02) :321-+
[10]  
Fan J, 2020, EXP MOL MED, V52, P1452