A novel deep unsupervised learning-based framework for optimization of truss structures

被引:31
|
作者
Mai, Hau T. [1 ,2 ]
Lieu, Qui X. [3 ,4 ]
Kang, Joowon [5 ]
Lee, Jaehong [1 ]
机构
[1] Sejong Univ, Deep Learning Architectural Res Ctr, 209 Neungdong Ro, Seoul 05006, South Korea
[2] Ind Univ Ho Chi Minh City, Fac Mech Engn, 12 Nguyen Van Bao St,Ward 4, Ho Chi Minh City 70000, Vietnam
[3] Ho Chi Minh City Univ Technol HCMUT, Fac Civil Engn, 268 Ly Thuong Kiet St,Ward 14,Dist 10, Ho Chi Minh City, Vietnam
[4] Vietnam Natl Univ Ho Chi Minh City VNU HCM, Linh Trung Ward, Ho Chi Minh City, Vietnam
[5] Yeungnam Univ, Sch Architecture, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Unsupervised learning; Deep neural network; Loss function; Truss optimization; DIFFERENTIAL EVOLUTION ALGORITHM; NEURAL-NETWORK; DESIGN OPTIMIZATION; SIZE OPTIMIZATION; CONSTRAINTS; LAYOUT; SHAPE;
D O I
10.1007/s00366-022-01636-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, an efficient deep unsupervised learning (DUL)-based framework is proposed to directly perform the design optimization of truss structures under multiple constraints for the first time. Herein, the members' cross-sectional areas are parameterized using a deep neural network (DNN) with the middle spatial coordinates of truss elements as input data. The parameters of the network, including weights and biases, are regarded as decision variables of the structural optimization problem, instead of the member's cross-sectional areas as those of traditional optimization algorithms. A new loss function of the network model is constructed with the aim of minimizing the total structure weight so that all constraints of the optimization problem via unsupervised learning are satisfied. To achieve the optimal parameters, the proposed model is trained to minimize the loss function by a combination of the standard gradient optimizer and backpropagation algorithm. As soon as the learning process ends, the optimum weight of truss structures is indicated without utilizing any other time-consuming metaheuristic algorithms. Several illustrative examples are investigated to demonstrate the efficiency of the proposed framework in requiring much lower computational cost against other conventional methods, yet still providing high-quality optimal solutions.
引用
收藏
页码:2585 / 2608
页数:24
相关论文
共 50 条
  • [11] An automated unsupervised deep learning-based approach for diabetic retinopathy detection
    Naz, Huma
    Nijhawan, Rahul
    Ahuja, Neelu Jyothi
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (12) : 3635 - 3654
  • [12] A framework for brain learning-based control of smart structures
    Rahmani, Hamid Radmard
    Chase, Geoffrey
    Wiering, Marco
    Koenkea, Carsten
    ADVANCED ENGINEERING INFORMATICS, 2019, 42
  • [13] Deep Learning-Based Surrogate-Assisted Intelligent Optimization Framework for Reservoir Production Schemes
    Wang, Lian
    Wang, Hehua
    Zhang, Liehui
    Zhang, Liang
    Deng, Rui
    Xu, Bing
    Zhao, Xing
    Zhou, Chunxiang
    Fan, Li
    Lv, Xindong
    Wu, Junda
    NATURAL RESOURCES RESEARCH, 2025, : 1701 - 1724
  • [14] A Hybrid Deep Learning-Based Unsupervised Anomaly Detection in High Dimensional Data
    Muneer, Amgad
    Taib, Shakirah Mohd
    Fati, Suliman Mohamed
    Balogun, Abdullateef O.
    Aziz, Izzatdin Abdul
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 5363 - 5381
  • [15] A hybrid deep learning-based unsupervised anomaly detection in high dimensional data
    Muneer A.
    Taib S.M.
    Fati S.M.
    Balogun A.O.
    Aziz I.A.
    Computers, Materials and Continua, 2022, 70 (03) : 6073 - 6088
  • [16] A deep learning-based framework for retinal fundus image enhancement
    Lee, Kang Geon
    Song, Su Jeong
    Lee, Soochahn
    Yu, Hyeong Gon
    Kim, Dong Ik
    Lee, Kyoung Mu
    PLOS ONE, 2023, 18 (03):
  • [17] Unsupervised deep learning-based displacement estimation for vascular elasticity imaging applications
    Karageorgos, Grigorios M.
    Liang, Pengcheng
    Mobadersany, Nima
    Gami, Parth
    Konofagou, Elisa E.
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (15)
  • [18] Development of a non-uniform cellular automata framework for sizing, topology and layout optimization of truss structures
    El Bouzouiki, Mohamed
    Sedaghati, Ramin
    Stiharu, Ion
    ENGINEERING OPTIMIZATION, 2024, 56 (12) : 2099 - 2130
  • [19] A novel binomial strategy for simultaneous topology and size optimization of truss structures
    Mortazavi, Ali
    ENGINEERING OPTIMIZATION, 2024,
  • [20] A novel reinforcement learning-based method for structure optimization
    Mei, Zijian
    Yang, Zhouwang
    Chen, Jingrun
    ENGINEERING OPTIMIZATION, 2024,