A novel deep unsupervised learning-based framework for optimization of truss structures

被引:31
|
作者
Mai, Hau T. [1 ,2 ]
Lieu, Qui X. [3 ,4 ]
Kang, Joowon [5 ]
Lee, Jaehong [1 ]
机构
[1] Sejong Univ, Deep Learning Architectural Res Ctr, 209 Neungdong Ro, Seoul 05006, South Korea
[2] Ind Univ Ho Chi Minh City, Fac Mech Engn, 12 Nguyen Van Bao St,Ward 4, Ho Chi Minh City 70000, Vietnam
[3] Ho Chi Minh City Univ Technol HCMUT, Fac Civil Engn, 268 Ly Thuong Kiet St,Ward 14,Dist 10, Ho Chi Minh City, Vietnam
[4] Vietnam Natl Univ Ho Chi Minh City VNU HCM, Linh Trung Ward, Ho Chi Minh City, Vietnam
[5] Yeungnam Univ, Sch Architecture, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Unsupervised learning; Deep neural network; Loss function; Truss optimization; DIFFERENTIAL EVOLUTION ALGORITHM; NEURAL-NETWORK; DESIGN OPTIMIZATION; SIZE OPTIMIZATION; CONSTRAINTS; LAYOUT; SHAPE;
D O I
10.1007/s00366-022-01636-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, an efficient deep unsupervised learning (DUL)-based framework is proposed to directly perform the design optimization of truss structures under multiple constraints for the first time. Herein, the members' cross-sectional areas are parameterized using a deep neural network (DNN) with the middle spatial coordinates of truss elements as input data. The parameters of the network, including weights and biases, are regarded as decision variables of the structural optimization problem, instead of the member's cross-sectional areas as those of traditional optimization algorithms. A new loss function of the network model is constructed with the aim of minimizing the total structure weight so that all constraints of the optimization problem via unsupervised learning are satisfied. To achieve the optimal parameters, the proposed model is trained to minimize the loss function by a combination of the standard gradient optimizer and backpropagation algorithm. As soon as the learning process ends, the optimum weight of truss structures is indicated without utilizing any other time-consuming metaheuristic algorithms. Several illustrative examples are investigated to demonstrate the efficiency of the proposed framework in requiring much lower computational cost against other conventional methods, yet still providing high-quality optimal solutions.
引用
收藏
页码:2585 / 2608
页数:24
相关论文
共 50 条
  • [1] A novel deep unsupervised learning-based framework for optimization of truss structures
    Hau T. Mai
    Qui X. Lieu
    Joowon Kang
    Jaehong Lee
    Engineering with Computers, 2023, 39 : 2585 - 2608
  • [2] A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior
    Mai, Hau T.
    Kang, Joowon
    Lee, Jaehong
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2021, 196
  • [3] A hybrid intelligent genetic algorithm for truss optimization based on deep neutral network
    Liu, Jiepeng
    Xia, Yi
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 73
  • [4] Unsupervised Learning-Based Framework for Deepfake Video Detection
    Zhang, Li
    Qiao, Tong
    Xu, Ming
    Zheng, Ning
    Xie, Shichuang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4785 - 4799
  • [5] Tunable anisotropy in lattice structures via deep learning-based optimization
    Park, Chaewon
    Lee, Sangryun
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2025, 290
  • [6] A population-based DNN-augmented optimization method for designing truss structures
    Xia, Yi
    Liu, Jiepeng
    Qi, Hongtuo
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 89
  • [7] Study on Deep Unsupervised Learning Optimization Algorithm Based on Cloud Computing
    Yan, Hui
    Yu, Ping
    Long, Duo
    2019 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2019, : 679 - 681
  • [8] A teaching learning based optimization for truss structures with frequency constraints
    Dede, Tayfun
    Togan, Vedat
    STRUCTURAL ENGINEERING AND MECHANICS, 2015, 53 (04) : 833 - 845
  • [9] Unsupervised learning-based flexible framework for surveillance planning with aerial vehicles
    Faigl, Jan
    Vana, Petr
    Penicka, Robert
    Saska, Martin
    JOURNAL OF FIELD ROBOTICS, 2019, 36 (01) : 270 - 301
  • [10] Deep Learning-Based Image Retrieval With Unsupervised Double Bit Hashing
    Guo, Jing-Ming
    Prayuda, Alim Wicaksono Hari
    Prasetyo, Heri
    Seshathiri, Sankarasrinivasan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (11) : 7050 - 7065