Self-sensing model of low-frequency magnetostrictive composites actuator based on Jiles-Atherton theory

被引:2
作者
Chen, Jiamin [1 ]
Wang, Lei [1 ]
Yu, Jiuwei [1 ]
Sun, Hongwei [1 ]
Wang, Jing [1 ]
Zhang, Haoze [1 ]
机构
[1] Harbin Inst Technol, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
self-sensing; giant magnetostrictive actuator; magnetostrictive composites; J-A model; HYSTERESIS;
D O I
10.1088/1361-665X/ad378a
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Giant magnetostrictive powder composites (GMPCs) have important applications in electric current sensing, stress sensing, vibration damping, actuation, health monitoring and other fields. Most of the research discussed the actuation or sensing function of GMPCs merely. In this paper, GMPCs based actuator with a self-sensing function is proposed to realize direct measurement of the deformation amplitudes of the actuator in low frequency, through monitoring the voltage signal of the driving circuit. It also means the actuator can be used as a compressive stress and magnetostriction sensor. The self-sensing actuator avoids the dependence on extra sensors for actuation detection, which complements the self-sensing technique in GMPC-based actuators. It is helpful not only in the designing and controlling of self-sensing applications in actuators, but also in expanding the applications of GMPCs in the field of integrated devices.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA [J].
Akiyama, Y. ;
Akutsu, T. ;
Ando, M. ;
Arai, K. ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Aritomi, N. ;
Asada, H. ;
Aso, Y. ;
Bae, S. ;
Baiotti, L. ;
Barton, M. A. ;
Cannon, K. ;
Capocasa, E. ;
Chen, C-S ;
Chiu, T-W ;
Cho, K. ;
Chu, Y-K ;
Craig, K. ;
Dattilo, V ;
Doi, K. ;
Enomoto, Y. ;
Flaminio, R. ;
Fujii, Y. ;
Fujimoto, M-K ;
Fukunaga, M. ;
Fukushima, M. ;
Furuhata, T. ;
Haino, S. ;
Hasegawa, K. ;
Hashimoto, Y. ;
Hashino, K. ;
Hayama, K. ;
Hirayama, T. ;
Hirose, E. ;
Hsieh, B. H. ;
Huang, C-Z ;
Ikenoue, B. ;
Inoue, Y. ;
Ioka, K. ;
Itoh, Y. ;
Izumi, K. ;
Kaji, T. ;
Kajita, T. ;
Kakizaki, M. ;
Kamiizumi, M. ;
Kanbara, S. ;
Kanda, N. ;
Kanemura, S. .
CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (09)
[2]   Sensor and actuator integrated tooling systems [J].
Bleicher, F. ;
Biermann, D. ;
Drossel, W. -G ;
Moehring, H. -C ;
Altintas, Y. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2023, 72 (02) :673-696
[3]   Performance of Smart Materials-Based Instrumentation for Force Measurements in Biomedical Applications: A Methodological Review [J].
Bocchetta, Gabriele ;
Fiori, Giorgia ;
Sciuto, Salvatore Andrea ;
Scorza, Andrea .
ACTUATORS, 2023, 12 (07)
[4]   Modeling the Dynamic Behavior of Magnetostrictive Actuators [J].
Bottauscio, Oriano ;
Roccato, Paolo E. ;
Zucca, Mauro .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) :3022-3028
[5]   A pendulum actuator for environmental vibration isolation based on magnetostrictive composite material [J].
Chen, Jiamin ;
Wang, Lei ;
Lin, Jie ;
Tang, Yuxuan .
SENSORS AND ACTUATORS REPORTS, 2022, 4
[6]  
Clark A. E., 1980, Ferromagnetic materials. A handbook on the properties of magnetically ordered substances, vol.1, P531, DOI 10.1016/S1567-2719(80)01010-4
[7]   Application of magnetorheological elastomer to vibration absorber [J].
Deng, Hua-xia ;
Gong, Xing-long .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (09) :1938-1947
[8]   Design and large magnetostriction of Tb0.34Dy0.56Pr0.1Fe1.9/epoxy composite containing near-spherical single-crystal particles [J].
Dong, Dashun ;
Qian, Jin ;
Wei, Geng ;
Huang, Ye ;
Zhang, Li ;
Ding, Hehe ;
Shi, Yangguang ;
Tang, Shaolong .
SCRIPTA MATERIALIA, 2022, 219
[9]  
Duenas TA, 1997, MATER RES SOC SYMP P, V459, P527
[10]   Research on a novel force sensor based on giant magnetostrictive material and its model [J].
Jia, Zhen-Yuan ;
Liu, Hui-Fang ;
Wang, Fu-Ji ;
Ge, Chun-Ya .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (05) :1760-1767