Microstructure-Based Modeling of Laser Beam Shaping During Additive Manufacturing

被引:10
作者
Moore, Robert [1 ]
Orlandi, Giovanni [2 ]
Rodgers, Theron [3 ]
Moser, Daniel [3 ]
Murdoch, Heather [4 ]
Abdeljawad, Fadi [1 ,2 ]
机构
[1] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
[2] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA
[3] Sandia Natl Labs, Albuquerque, NM 87185 USA
[4] DEVCOM Army Res Lab, Aberdeen Proving Ground, MD 21005 USA
基金
美国国家科学基金会;
关键词
POWDER-BED FUSION; ENERGY DENSITY; PROCESS PARAMETERS; MECHANICAL-PROPERTIES; MELTING PROCESS; HEAT-TRANSFER; FLUID-FLOW; SIMULATION; ALLOY; GEOMETRY;
D O I
10.1007/s11837-023-06363-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent experimental studies suggest the use of spatially extended laser beam profiles as a strategy to control the melt pool during laser powder bed fusion (LPBF) additive manufacturing. However, linkages connecting laser beam profiles to thermal fields and resultant microstructures have not been established. Herein, we employ a coupled thermal transport-Monte Carlo model to predict the evolution of temperature fields and grain microstructures during LPBF using Gaussian, ring, and Bessel beam profiles. Simulation results reveal that the ring-shaped beam yields lower temperatures compared with the Gaussian beam. Owing to the small melt pool size when using the Bessel beam, the grains are smaller in size and more equiaxed compared to those using the Gaussian and ring beams. Our approach provides future avenues to predict the impact of laser beam shaping on microstructure development during LPBF.
引用
收藏
页码:1726 / 1736
页数:11
相关论文
共 88 条
[1]   THERMO-CALC & DICTRA, computational tools for materials science [J].
Andersson, JO ;
Helander, T ;
Höglund, LH ;
Shi, PF ;
Sundman, B .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02) :273-312
[2]   Single scan track analyses on aluminium based powders [J].
Aversa, Alberta ;
Moshiri, Mandana ;
Librera, Erica ;
Hadi, Mehdi ;
Marchese, Giulio ;
Manfredi, Diego ;
Lorusso, Massimo ;
Calignano, Flaviana ;
Biamino, Sara ;
Lombardi, Mariangela ;
Pavese, Matteo .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 255 :17-25
[3]   Effect of beam shape and spatial energy distribution on weld bead geometry in conduction welding [J].
Ayoola, W. A. ;
Suder, W. J. ;
Williams, S. W. .
OPTICS AND LASER TECHNOLOGY, 2019, 117 :280-287
[4]   A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies [J].
Bayat, Mohamad ;
Dong, Wen ;
Thorborg, Jesper ;
To, Albert C. ;
Hattel, Jesper H. .
ADDITIVE MANUFACTURING, 2021, 47
[5]   On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting [J].
Bertoli, Umberto Scipioni ;
Wolfer, Alexander J. ;
Matthews, Manyalibo J. ;
Delplanque, Jean-Pierre R. ;
Schoenung, Julie M. .
MATERIALS & DESIGN, 2017, 113 :331-340
[6]   Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing [J].
Campoli, G. ;
Borleffs, M. S. ;
Yavari, S. Amin ;
Wauthle, R. ;
Weinans, H. ;
Zadpoor, A. A. .
MATERIALS & DESIGN, 2013, 49 :957-965
[7]  
Carslaw H.S., 1906, Introduction to the Mathematical Theory of the Conduction of Heat in Solids
[8]   Additive Manufacturing of Al-12Si Alloy Via Pulsed Selective Laser Melting [J].
Chou, R. ;
Milligan, J. ;
Paliwal, M. ;
Brochu, M. .
JOM, 2015, 67 (03) :590-596
[9]   Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy [J].
Chowdhury, S. M. ;
Chen, D. L. ;
Bhole, S. D. ;
Powidajko, E. ;
Weckman, D. C. ;
Zhou, Y. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (07) :1974-1989
[10]   Use of Bimodal Particle Size Distribution in Selective Laser Melting of 316L Stainless Steel [J].
Coe, Hannah G. ;
Pasebani, Somayeh .
JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2020, 4 (01)