Unified bounds for the independence number of graphs

被引:0
作者
Zhou, Jiang [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin, Peoples R China
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2025年 / 77卷 / 01期
基金
中国国家自然科学基金;
关键词
Independence number; graph matrix; Lovasz theta function; Shannon capacity; generalized inverse; eigenvalue; SHANNON CAPACITY; INTERSECTING FAMILIES; THEOREM; LOVASZ; CLIQUE;
D O I
10.4153/S0008414X23000822
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hoffman ratio bound, Lovasz theta function, and Schrijver theta function are classical upper bounds for the independence number of graphs, which are useful in graph theory, extremal combinatorics, and information theory. By using generalized inverses and eigenvalues of graph matrices, we give bounds for independence sets and the independence number of graphs. Our bounds unify the Lovasz theta function, Schrijver theta function, and Hoffman-type bounds, and we obtain the necessary and sufficient conditions of graphs attaining these bounds. Our work leads to some simple structural and spectral conditions for determining a maximum independent set, the independence number, the Shannon capacity, and the Lovasz theta function of a graph.
引用
收藏
页码:97 / 117
页数:21
相关论文
共 25 条
[1]   The Shannon capacity of a union [J].
Alon, N .
COMBINATORICA, 1998, 18 (03) :301-310
[2]  
[Anonymous], 2010, An Introduction to the Theory of Graph Spectra, DOI DOI 10.1017/CBO9780511801518
[3]  
Ben-Israel A., 2003, Generalized Inverses: Theory and Applications, V2nd
[4]   On the spectral radius of graphs with cut vertices [J].
Berman, A ;
Zhang, XD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :233-240
[5]   A limit theorem for the Shannon capacities of odd cycles I [J].
Bohman, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (11) :3559-3569
[6]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[7]   Discrete Green's functions [J].
Chung, F ;
Yau, ST .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) :191-214
[8]  
DELSARTE P, 1973, PHILIPS RES REP, P1
[9]   INTERSECTING FAMILIES OF PERMUTATIONS [J].
Ellis, David ;
Friedgut, Ehud ;
Pilpel, Haran .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :649-682
[10]   Triangle-intersecting families of graphs [J].
Ellis, David ;
Filmus, Yuval ;
Friedgut, Ehud .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (03) :841-885