A NOTE ON THE PREDICTION ERROR OF PRINCIPAL COMPONENT REGRESSION IN HIGH DIMENSIONS

被引:0
作者
Hucker, Laura [1 ]
Wahl, Martin [2 ]
机构
[1] Humboldt Univ, Inst Math, unter linden 6, D-10099 Berlin, Germany
[2] Univ Bielefeld, Fak Math, Postfach 100131, D-33615 Bielefeld, Germany
关键词
Principal component regression; prediction error; principal component anal-ysis; excess risk; eigenvalue upward bias; benign overfitting; BOUNDS;
D O I
10.1090/tpms/1196
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyze the prediction error of principal component regression (PCR) and prove high probability bounds for the corresponding squared risk conditional on the design. Our first main result shows that PCR performs comparably to the oracle method obtained by replacing empirical principal components by their population counterparts, provided that an effective rank condition holds. On the other hand, if the latter condition is violated, then empirical eigenvalues start to have a significant upward bias, resulting in a self-induced regularization of PCR. Our approach relies on the behavior of empirical eigenvalues, empirical eigenvectors and the excess risk of principal component analysis in high-dimensional regimes.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 25 条
  • [1] [Anonymous], 2018, Cambridge Series in Statistical and Probabilistic Mathematics, V47
  • [2] [Anonymous], 2012, Springer Series in Statistics
  • [3] Deep learning: a statistical viewpoint
    Bartlett, Peter L.
    Montanari, Andrea
    Rakhlin, Alexander
    [J]. ACTA NUMERICA, 2021, 30 : 87 - 201
  • [4] Benign overfitting in linear regression
    Bartlett, Peter L.
    Long, Philip M.
    Lugosi, Gabor
    Tsigler, Alexander
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) : 30063 - 30070
  • [5] The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices
    Benaych-Georges, Florent
    Nadakuditi, Raj Rao
    [J]. ADVANCES IN MATHEMATICS, 2011, 227 (01) : 494 - 521
  • [6] Optimal Rates for Regularization of Statistical Inverse Learning Problems
    Blanchard, Gilles
    Muecke, Nicole
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (04) : 971 - 1013
  • [7] On the principal components of sample covariance matrices
    Bloemendal, Alex
    Knowles, Antti
    Yau, Horng-Tzer
    Yin, Jun
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (1-2) : 459 - 552
  • [8] Boucheron S., 2013, Concentration inequalities: a nonasymptotic theory of independence, DOI DOI 10.1093/ACPROF:OSO/9780199535255.001.0001
  • [9] Non-asymptotic adaptive prediction in functional linear models
    Brunel, Elodie
    Mas, Andre
    Roche, Angelina
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 208 - 232
  • [10] Thresholding projection estimators in functional linear models
    Cardot, Herve
    Johannes, Jan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (02) : 395 - 408