Engineered Nanomaterials to Potentiate CRISPR/Cas9 Gene Editing for Cancer Therapy

被引:24
|
作者
Yi, Ke [1 ]
Kong, Huimin [1 ]
Lao, Yeh-Hsing [2 ]
Li, Di [3 ]
Mintz, Rachel L. [4 ]
Fang, Tianxu [5 ]
Chen, Guojun [5 ]
Tao, Yu [1 ]
Li, Mingqiang [1 ]
Ding, Jianxun [3 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 3, Ctr Nanomed, Lab Biomat & Translat Med, 600 Tianhe Rd, Guangzhou 510630, Peoples R China
[2] SUNY Buffalo, Dept Pharmaceut Sci, 3435 Main St, Buffalo, NY 14214 USA
[3] Chinese Acad Sci, Key Lab Polymer Ecomat, Changchun Inst Appl Chem, 5625 Renmin St, Changchun 130022, Peoples R China
[4] Washington Univ St Louis, Dept Biomed Engn, 1 Brookings Dr, St Louis, MO 63110 USA
[5] McGill Univ, Rosalind & Morris Goodman Canc Inst, Dept Biomed Engn, 3655 Promenade Sir William Osler, Montreal, PQ H3G 0B1, Canada
基金
中国国家自然科学基金;
关键词
cancer therapy; CRISPR/Cas9; drug delivery; gene editing; nanomaterials; CAS9; MESSENGER-RNA; DELIVERY-SYSTEM; DRUG-DELIVERY; INTRACELLULAR DELIVERY; NANOPARTICLE DELIVERY; CRISPR-CAS9; NUCLEASES; CHEMICAL-MODIFICATION; TARGETING DELIVERY; PROTEIN CORONA; GENOME;
D O I
10.1002/adma.202300665
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) gene-editing technology shows promise for manipulating single or multiple tumor-associated genes and engineering immune cells to treat cancers. Currently, most gene-editing strategies rely on viral delivery; yet, while being efficient, many limitations, mainly from safety and packaging capacity considerations, hinder the use of viral CRISPR vectors in cancer therapy. In contrast, recent advances in non-viral CRISPR/Cas9 nanoformulations have paved the way for better cancer gene editing, as these nanoformulations can be engineered to improve safety, efficiency, and specificity through optimizing the packaging capacity, pharmacokinetics, and targetability. In this review, the advance in non-viral CRISPR delivery is highlighted, and there is a discussion on how these approaches can be potentially used to treat cancers in addressing the aforementioned limitations, followed by the perspectives in designing a proper CRISPR/Cas9-based cancer nanomedicine system with translational potential. Advanced engineered nanomaterials for delivering CRISPR/Cas9 gene-editing components have revolutionized cancer therapeutics by enhancing their safety, efficiency, and specificity through optimizing the packaging capacity, pharmacokinetics, and targetability.image
引用
收藏
页数:45
相关论文
共 50 条
  • [31] Application of CRISPR/Cas9 System for Efficient Gene Editing in Peanut
    Neelakandan, Anjanasree K.
    Wright, David A.
    Traore, Sy M.
    Ma, Xingli
    Subedi, Binita
    Veeramasu, Suman
    Spalding, Martin H.
    He, Guohao
    PLANTS-BASEL, 2022, 11 (10):
  • [32] Applications of CRISPR/Cas9 for Gene Editing in Hereditary Movement Disorders
    Im, Wooseok
    Moon, Jangsup
    Kim, Manho
    JOURNAL OF MOVEMENT DISORDERS, 2016, 9 (03) : 136 - 143
  • [33] Opportunities for CRISPR/Cas9 Gene Editing in Retinal Regeneration Research
    Campbell, Leah J.
    Hyde, David R.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2017, 5
  • [34] Pre-clinical non-viral vectors exploited for in vivo CRISPR/Cas9 gene editing: an overview
    Rouatbi, Nadia
    McGlynn, Tasneem
    Al-Jamal, Khuloud T.
    BIOMATERIALS SCIENCE, 2022, 10 (13) : 3410 - 3432
  • [35] CRISPR/CAS9 Technologies
    Williams, Bart O.
    Warman, Matthew L.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2017, 32 (05) : 883 - 888
  • [36] Efficient In Vivo Liver-Directed Gene Editing Using CRISPR/Cas9
    Singh, Kshitiz
    Evens, Hanneke
    Nair, Nisha
    Rincon, Melvin Y.
    Sarcar, Shilpita
    Samara-Kuko, Ermira
    Chuah, Marinee K.
    VandenDriessche, Thierry
    MOLECULAR THERAPY, 2018, 26 (05) : 1241 - 1254
  • [37] Application of CRISPR/Cas9 Gene Editing System in Obtaining Natural Products in Actinomycetes
    Qiao, Yi
    Zhang, Qinglin
    Chen, Dandan
    Liu, Meina
    Liu, Wen
    CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2021, 41 (11) : 4279 - 4288
  • [38] Optical Control of a CRISPR/Cas9 System for Gene Editing by Using Photolabile crRNA
    Zhang, Yu
    Ling, Xinyu
    Su, Xiaoxuan
    Zhang, Shilin
    Wang, Jing
    Zhang, Pingjing
    Feng, Wenjian
    Zhu, York Yuanyuan
    Liu, Tao
    Tang, Xinjing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (47) : 20895 - 20899
  • [39] Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9
    Yumlu, Saniye
    Stumm, Juergen
    Bashir, Sanum
    Dreyer, Anne-Kathrin
    Lisowski, Pawel
    Danner, Eric
    Kuehn, Ralf
    METHODS, 2017, 121 : 29 - 44
  • [40] Biomimetic Mineralization-Based CRISPR/Cas9 Ribonucleoprotein Nanoparticles for Gene Editing
    Li, Shuojun
    Song, Zhiyong
    Liu, Caiyun
    Chen, Xiao-Lin
    Han, Heyou
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (51) : 47762 - 47770