Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data

被引:2
作者
Zotov, Mikhail [1 ]
Anzhiganov, Dmitry [1 ,2 ]
Kryazhenkov, Aleksandr [1 ,2 ]
Barghini, Dario [3 ,4 ,5 ]
Battisti, Matteo [3 ]
Belov, Alexander [1 ,6 ]
Bertaina, Mario [3 ,4 ]
Bianciotto, Marta [4 ]
Bisconti, Francesca [3 ,7 ]
Blaksley, Carl [8 ]
Blin, Sylvie [9 ]
Cambie, Giorgio [7 ,10 ]
Capel, Francesca [11 ,12 ]
Casolino, Marco [7 ,8 ,10 ]
Ebisuzaki, Toshikazu [8 ]
Eser, Johannes [13 ]
Fenu, Francesco [4 ,21 ]
Franceschi, Massimo Alberto [14 ]
Golzio, Alessio [3 ,4 ]
Gorodetzky, Philippe [9 ]
Kajino, Fumiyoshi [15 ]
Kasuga, Hiroshi [8 ]
Klimov, Pavel [1 ,6 ]
Manfrin, Massimiliano [3 ,4 ]
Marcelli, Laura [7 ]
Miyamoto, Hiroko [3 ]
Murashov, Alexey [1 ,6 ]
Napolitano, Tommaso [14 ]
Ohmori, Hiroshi [8 ]
Olinto, Angela [13 ]
Parizot, Etienne [9 ,16 ]
Picozza, Piergiorgio [7 ,10 ]
Piotrowski, Lech Wiktor [17 ]
Plebaniak, Zbigniew [3 ,4 ,18 ]
Prevot, Guillaume [9 ]
Reali, Enzo [7 ,10 ]
Ricci, Marco [14 ]
Romoli, Giulia [7 ,10 ]
Sakaki, Naoto [8 ]
Shinozaki, Kenji [18 ]
De La Taille, Christophe [19 ]
Takizawa, Yoshiyuki [8 ]
Vrabel, Michal [18 ]
Wiencke, Lawrence [20 ]
Werner, Frank
机构
[1] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
[3] INFN, Sez Torino, Via Pietro Giuria 1, I-10125 Turin, Italy
[4] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy
[5] INAF, Osservatorio Astrofisico Torino, Via Osservatorio 20, I-10025 Turin, Italy
[6] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[7] INFN, Sez Roma Tor Vergata, Via Ric Sci 1, I-00133 Rome, Italy
[8] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[9] Univ Paris Cite, AstroParticule & Cosmol, CNRS, F-75013 Paris, France
[10] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy
[11] Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany
[12] KTH Royal Inst Technol, Dept Particle & Astroparticle Phys, SE-10044 Stockholm, Sweden
[13] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[14] INFN, Lab Nazl Frascati, I-00044 Frascati, Italy
[15] Konan Univ, Dept Phys, Kobe 6588501, Japan
[16] Inst Univ France IUF, AstroParticule & Cosmol, F-75231 Paris 05, France
[17] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland
[18] Natl Ctr Nucl Res, Ul Pasteura 7, PL-02093 Warsaw, Poland
[19] Ecole Polytech, Omega, CNRS, IN2P3, F-91128 Palaiseau, France
[20] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[21] Agenzia Spaziale Italiana, Via Politecn, I-00133 Rome, Italy
基金
俄罗斯科学基金会;
关键词
machine learning; neural network; pattern recognition; meteor; fluorescence telescope; orbital experiment; UV illumination; atmosphere; PERFORMANCE;
D O I
10.3390/a16090448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A Graph Neural Network for EEG-Based Emotion Recognition With Contrastive Learning and Generative Adversarial Neural Network Data Augmentation
    Gilakjani, Sareh Soleimani
    Al Osman, Hussein
    IEEE ACCESS, 2024, 12 : 113 - 130
  • [42] A Deep Neural Network Based Holistic Approach for Optical Character Recognition of Handwritten Documents
    Mukherjee J.
    SN Computer Science, 5 (4)
  • [43] Face recognition: A convolutional neural-network approach
    Lawrence, S
    Giles, CL
    Tsoi, AC
    Back, AD
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (01): : 98 - 113
  • [44] Pattern Recognition Based on Heuristic Neural Network
    Su, Kuo-Ho
    Lee, Tan-Feng
    Liao, Hao Yu
    2017 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2017, : 284 - 288
  • [45] Coin recognition system based on a neural network
    Iana, Gabriel V.
    Monea, Cristian
    PROCEEDINGS OF THE 2014 6TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI), 2014,
  • [46] RADAR TARGET RECOGNITION BASED ON NEURAL NETWORK
    Zhao Qun Bao Zheng Ye Wei (Institute of Electronics Engineering
    Journal of Electronics(China), 1996, (01) : 1 - 10
  • [47] A Dynamic Pattern Recognition Approach Based on Neural Network for Stock Time-Series
    Zhou, Bo
    Hu, Jinglu
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1551 - 1554
  • [48] Recognition of a Life Distribution Based on a Neural Network
    GAO Shang Department of Electronics and Information
    International Journal of Plant Engineering and Management, 2004, (01) : 42 - 45
  • [49] Face Recognition Based on Wavelet Neural Network
    Zhang, Hong
    ADVANCED RESEARCH ON INDUSTRY, INFORMATION SYSTEMS AND MATERIAL ENGINEERING, PTS 1-7, 2011, 204-210 : 216 - 219
  • [50] A robust flight coupon recognition system based on multi neural network
    Luo, ZM
    Wang, ZY
    Li, Y
    2004 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), VOLS. 1- 3, 2004, : 1133 - 1137