Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data

被引:2
作者
Zotov, Mikhail [1 ]
Anzhiganov, Dmitry [1 ,2 ]
Kryazhenkov, Aleksandr [1 ,2 ]
Barghini, Dario [3 ,4 ,5 ]
Battisti, Matteo [3 ]
Belov, Alexander [1 ,6 ]
Bertaina, Mario [3 ,4 ]
Bianciotto, Marta [4 ]
Bisconti, Francesca [3 ,7 ]
Blaksley, Carl [8 ]
Blin, Sylvie [9 ]
Cambie, Giorgio [7 ,10 ]
Capel, Francesca [11 ,12 ]
Casolino, Marco [7 ,8 ,10 ]
Ebisuzaki, Toshikazu [8 ]
Eser, Johannes [13 ]
Fenu, Francesco [4 ,21 ]
Franceschi, Massimo Alberto [14 ]
Golzio, Alessio [3 ,4 ]
Gorodetzky, Philippe [9 ]
Kajino, Fumiyoshi [15 ]
Kasuga, Hiroshi [8 ]
Klimov, Pavel [1 ,6 ]
Manfrin, Massimiliano [3 ,4 ]
Marcelli, Laura [7 ]
Miyamoto, Hiroko [3 ]
Murashov, Alexey [1 ,6 ]
Napolitano, Tommaso [14 ]
Ohmori, Hiroshi [8 ]
Olinto, Angela [13 ]
Parizot, Etienne [9 ,16 ]
Picozza, Piergiorgio [7 ,10 ]
Piotrowski, Lech Wiktor [17 ]
Plebaniak, Zbigniew [3 ,4 ,18 ]
Prevot, Guillaume [9 ]
Reali, Enzo [7 ,10 ]
Ricci, Marco [14 ]
Romoli, Giulia [7 ,10 ]
Sakaki, Naoto [8 ]
Shinozaki, Kenji [18 ]
De La Taille, Christophe [19 ]
Takizawa, Yoshiyuki [8 ]
Vrabel, Michal [18 ]
Wiencke, Lawrence [20 ]
Werner, Frank
机构
[1] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
[3] INFN, Sez Torino, Via Pietro Giuria 1, I-10125 Turin, Italy
[4] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy
[5] INAF, Osservatorio Astrofisico Torino, Via Osservatorio 20, I-10025 Turin, Italy
[6] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[7] INFN, Sez Roma Tor Vergata, Via Ric Sci 1, I-00133 Rome, Italy
[8] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[9] Univ Paris Cite, AstroParticule & Cosmol, CNRS, F-75013 Paris, France
[10] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy
[11] Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany
[12] KTH Royal Inst Technol, Dept Particle & Astroparticle Phys, SE-10044 Stockholm, Sweden
[13] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[14] INFN, Lab Nazl Frascati, I-00044 Frascati, Italy
[15] Konan Univ, Dept Phys, Kobe 6588501, Japan
[16] Inst Univ France IUF, AstroParticule & Cosmol, F-75231 Paris 05, France
[17] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland
[18] Natl Ctr Nucl Res, Ul Pasteura 7, PL-02093 Warsaw, Poland
[19] Ecole Polytech, Omega, CNRS, IN2P3, F-91128 Palaiseau, France
[20] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[21] Agenzia Spaziale Italiana, Via Politecn, I-00133 Rome, Italy
基金
俄罗斯科学基金会;
关键词
machine learning; neural network; pattern recognition; meteor; fluorescence telescope; orbital experiment; UV illumination; atmosphere; PERFORMANCE;
D O I
10.3390/a16090448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Iris recognition based on wavelet neural network transform system
    Wang, Anna
    Chen, Yu
    Zhang, Xinhua
    Wu, Jie
    IMECS 2007: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2007, : 115 - +
  • [32] Power Quality Disturbance Recognition and Analysis based on Neural Network
    Kang Shanlin
    Chen Jingwei
    Song Xiufa
    Kang Yuzhe
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOLS 1-2, 2008, : 925 - 928
  • [33] NEURAL NETWORK BASED RECOGNITION OF FLOW-INJECTION PATTERNS
    HARTNETT, M
    DIAMOND, D
    BARKER, PG
    ANALYST, 1993, 118 (04) : 347 - 354
  • [34] Design and analysis of spectral recognition system based on neural network
    Xiong Yu-hong
    Wen Zhi-yu
    Wang Ming-yan
    Xu Shao-ping
    Wang Wei-li
    Xiao Jian
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27 (01) : 139 - 142
  • [35] Using SIFT Descriptors for Face Recognition Based on Neural Network and Kepenekci Approach
    Mahmood, Samira Sirzadeh Haji
    Babaei, Peyman
    2019 IEEE 5TH CONFERENCE ON KNOWLEDGE BASED ENGINEERING AND INNOVATION (KBEI 2019), 2019, : 175 - 180
  • [36] Research on facial expression recognition based on multimodal data fusion and neural network
    Han Y.
    Wang X.
    Lu Z.
    International Journal of Wireless and Mobile Computing, 2024, 27 (01) : 47 - 55
  • [37] A Neural Network Approach to Score Fusion for Emotion Recognition
    Basbrain, Arwa Mohammed
    Gan, John Q.
    Sugimoto, Akihiro
    Clark, Adrian
    2018 10TH COMPUTER SCIENCE AND ELECTRONIC ENGINEERING CONFERENCE (CEEC), 2018, : 180 - 185
  • [38] Equipment Pattern Recognition of Unbalanced Fuel Consumption Data Based on Grouping Multi-BP Neural Network
    Xing, Huange
    Zheng, Xiaoying
    Zhang, Wei
    IEEE ACCESS, 2022, 10 : 44170 - 44177
  • [39] A Feature Recognition Approach with Fuzzy ART Neural Network
    Lu, Cong
    Zha, Jun
    MECHANICS, SOLID STATE AND ENGINEERING MATERIALS, 2011, 279 : 406 - 411
  • [40] A neural network approach to a classic image recognition problem
    Harron, Wilson
    Pettinger, Calvin
    Dony, Robert
    2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4, 2008, : 1436 - 1439