Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data

被引:2
|
作者
Zotov, Mikhail [1 ]
Anzhiganov, Dmitry [1 ,2 ]
Kryazhenkov, Aleksandr [1 ,2 ]
Barghini, Dario [3 ,4 ,5 ]
Battisti, Matteo [3 ]
Belov, Alexander [1 ,6 ]
Bertaina, Mario [3 ,4 ]
Bianciotto, Marta [4 ]
Bisconti, Francesca [3 ,7 ]
Blaksley, Carl [8 ]
Blin, Sylvie [9 ]
Cambie, Giorgio [7 ,10 ]
Capel, Francesca [11 ,12 ]
Casolino, Marco [7 ,8 ,10 ]
Ebisuzaki, Toshikazu [8 ]
Eser, Johannes [13 ]
Fenu, Francesco [4 ,21 ]
Franceschi, Massimo Alberto [14 ]
Golzio, Alessio [3 ,4 ]
Gorodetzky, Philippe [9 ]
Kajino, Fumiyoshi [15 ]
Kasuga, Hiroshi [8 ]
Klimov, Pavel [1 ,6 ]
Manfrin, Massimiliano [3 ,4 ]
Marcelli, Laura [7 ]
Miyamoto, Hiroko [3 ]
Murashov, Alexey [1 ,6 ]
Napolitano, Tommaso [14 ]
Ohmori, Hiroshi [8 ]
Olinto, Angela [13 ]
Parizot, Etienne [9 ,16 ]
Picozza, Piergiorgio [7 ,10 ]
Piotrowski, Lech Wiktor [17 ]
Plebaniak, Zbigniew [3 ,4 ,18 ]
Prevot, Guillaume [9 ]
Reali, Enzo [7 ,10 ]
Ricci, Marco [14 ]
Romoli, Giulia [7 ,10 ]
Sakaki, Naoto [8 ]
Shinozaki, Kenji [18 ]
De La Taille, Christophe [19 ]
Takizawa, Yoshiyuki [8 ]
Vrabel, Michal [18 ]
Wiencke, Lawrence [20 ]
Werner, Frank
机构
[1] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
[3] INFN, Sez Torino, Via Pietro Giuria 1, I-10125 Turin, Italy
[4] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy
[5] INAF, Osservatorio Astrofisico Torino, Via Osservatorio 20, I-10025 Turin, Italy
[6] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[7] INFN, Sez Roma Tor Vergata, Via Ric Sci 1, I-00133 Rome, Italy
[8] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[9] Univ Paris Cite, AstroParticule & Cosmol, CNRS, F-75013 Paris, France
[10] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy
[11] Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany
[12] KTH Royal Inst Technol, Dept Particle & Astroparticle Phys, SE-10044 Stockholm, Sweden
[13] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[14] INFN, Lab Nazl Frascati, I-00044 Frascati, Italy
[15] Konan Univ, Dept Phys, Kobe 6588501, Japan
[16] Inst Univ France IUF, AstroParticule & Cosmol, F-75231 Paris 05, France
[17] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland
[18] Natl Ctr Nucl Res, Ul Pasteura 7, PL-02093 Warsaw, Poland
[19] Ecole Polytech, Omega, CNRS, IN2P3, F-91128 Palaiseau, France
[20] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[21] Agenzia Spaziale Italiana, Via Politecn, I-00133 Rome, Italy
基金
俄罗斯科学基金会;
关键词
machine learning; neural network; pattern recognition; meteor; fluorescence telescope; orbital experiment; UV illumination; atmosphere; PERFORMANCE;
D O I
10.3390/a16090448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Implications of Mini-EUSO measurements for a space-based observation of UHECRs
    Bertaina, Mario Edoardo
    Barghini, Dario
    Battisti, Matteo
    Belov, Alexander
    Bianciotto, Marta
    Bisconti, Francesca
    Blaksley, Carl
    Blin, Sylvie
    Bolmgren, Karl
    Cambie, Giorgio
    Capel, Francesca
    Casolino, Marco
    Churilo, Igor
    Crisconio, Marino
    De La Taille, Christophe
    Ebisuzaki, Toshikazu
    Eser, Johannes
    Fenu, Francesco
    Filippatos, George
    Franceschi, Massimo Alberto
    Fuglesang, Christer
    Golzio, Alessio
    Gorodetzky, Philippe
    Kajino, Fumiyoshi
    Kasuga, Hiroshi
    Klimov, Pavel
    Kungel, Viktoria
    Kuznetsov, Vladimir
    Manfrin, Massimiliano
    Marcelli, Laura
    Mascetti, Gabriele
    Marszal, Wlodzimierz
    Mignone, Marco
    Miyamoto, Hiroko
    Murashov, Alexey
    Napolitano, Tommaso
    Ohmori, Hitoshi
    Olinto, Angela
    Parizot, Etienne
    Picozza, Piergiorgio
    Piotrowski, Lech Wiktor
    Plebaniak, Zbigniew
    Prevot, Guillaume
    Reali, Enzo
    Ricci, Marco
    Romoli, Giulia
    Sakaki, Naoto
    Sharakin, Sergei
    Shinozaki, Kenji
    Szabelski, Jacek
    ULTRA HIGH ENERGY COSMIC RAYS, UHECR 2022, 2023, 283
  • [2] A new artificial neural network based approach for recognition of handwritten digits
    Agrawal, Anil Kumar
    Yadav, Susheel
    Gupta, Amit Ambar
    Pandey, Vishnu
    INTERNATIONAL JOURNAL OF APPLIED PATTERN RECOGNITION, 2023, 7 (02) : 100 - 121
  • [3] Kohonen neural network and factor analysis based approach to geochemical data pattern recognition
    Sun, Xiang
    Deng, Jun
    Gong, Qingjie
    Wang, Qingfei
    Yang, Liqiang
    Zhao, Zhongying
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2009, 103 (01) : 6 - 16
  • [4] Design and Development of Neural Network Based Gesture Recognition for Mini Drone Control
    Bhadiyadra, Khushi
    Kumar, Rishabh
    Sagar, D.
    Sivasubramanian, Jayahar
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,
  • [5] Wavelet-based neural network approach to power quality disturbance recognition
    Kaewarsa, S.
    Attakitmongcol, K.
    IPEC: 2005 International Power Engineering Conference, Vols 1 and 2, 2005, : 266 - 271
  • [6] A Sundanese Characters Recognition Based on Backpropagation Neural Network Approach
    Pakpahan, Herman Santoso
    Haviluddin, Haviluddin
    Nurpadillah, Dinda Izmya
    Islamiyah, Islamiyah
    Setyadi, Hario Jati
    Widagdo, Putut Pamilih
    2019 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND INFORMATION ENGINEERING (ICEEIE), 2019, : 250 - 254
  • [7] Classification and recognition of encrypted EEG data based on neural network
    Liu, Yongshuang
    Huang, Haiping
    Xiao, Fu
    Malekian, Reza
    Wang, Wenming
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2020, 54
  • [8] Data Glove Gesture Recognition Based on an Improved Neural Network
    Wang Xinyu
    Sun Guan
    Han Dong
    Zhang Ting
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 2434 - 2437
  • [9] Face Recognition Based on BP Neural Network
    Duan, Yubo
    Yu, Tiecheng
    Zhou, Qun
    Liu, Jicheng
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL III: MODELLING AND SIMULATION IN ELECTRONICS, COMPUTING, AND BIO-MEDICINE, 2008, : 367 - 371
  • [10] A hybrid approach of neural network and memory-based learning to data mining
    Shin, CK
    Yun, UT
    Kim, HK
    Park, SC
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03): : 637 - 646