Quantitative comparison of impurity transport in turbulence reduced and enhanced scenarios at Wendelstein 7-X

被引:3
作者
Alcuson, J. A. [1 ,2 ]
Wegner, Th. [1 ]
Dinklage, A. [1 ]
Langenberg, A. [1 ]
Bahner, J. -P. [3 ]
Buttenschoen, B. [1 ]
Edlund, E. M. [4 ]
Fuchert, G. [1 ]
Garcia-Regana, J. M. [5 ]
Grulke, O. [1 ,6 ]
Huang, Z. [7 ]
Porkolab, M. [3 ]
Stechow, A. V. [1 ]
Xanthopoulos, P. [1 ]
Zocco, A. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
[2] Univ Cordoba, Lab Innovac Plasmas, Cordoba 14071, Spain
[3] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[4] SUNY Coll Cortland, Cortland, NY 13045 USA
[5] CIEMAT, Lab Nacl Fus, Ave Complutense, Madrid 28040, Spain
[6] Tech Univ Denmark, DK-2800 Lyngby, Denmark
[7] UKAEA, Culham Ctr Fus Energy, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
关键词
turbulent transport; impurity transport; stellarator; plasma; DRIVEN; PLASMA; SPECTROMETER; MODES;
D O I
10.1088/1741-4326/aceb76
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We assess the turbulent particle transport being responsible for the limitation of the confinement and, thus, the overall performance of the neoclassically optimized stellarator Wendelstein 7-X. The radial particle transport is experimentally inferred from the evaluation of impurity injection into turbulence reduced and enhanced plasma scenarios revealing a completely different confinement behavior. The impact of the density gradient on the turbulent ion transport is theoretically estimated using large-scale non-linear gyro-kinetic simulations enabling, for the first time in Wendelstein 7-X, a quantitative comparison to the experimentally assessed impurity transport properties. We demonstrate that impurity transport in most of the Wendelstein 7-X discharges, up to now impossible to cover only with neoclassical estimations, is dominated by turbulence and can be modelled via gyro-kinetic simulations.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Suppression of electrostatic micro-instabilities in maximum-J stellarators [J].
Alcuson, J. A. ;
Xanthopoulos, P. ;
Plunk, G. G. ;
Helander, P. ;
Wilms, F. ;
Turkin, Y. ;
von Stechow, A. ;
Grulke, O. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (03)
[2]  
Andreeva T., 2002, VACUUM MAGNETIC CONF
[3]   Phase contrast imaging measurements and numerical simulations of turbulent density fluctuations in gas-fuelled ECRH discharges in Wendelstein 7-X [J].
Baehner, J-P. ;
Alcuson, J. K. ;
Hansen, S. K. ;
von Stechow, A. ;
Grulke, O. ;
Windisch, T. ;
Smith, H. M. ;
Huang, Z. ;
Edlund, E. M. ;
Porkolab, M. ;
Beurskens, M. N. A. ;
Bozhenkov, S. A. ;
Ford, O. P. ;
Vano, L. ;
Langenberg, A. ;
Pablant, N. ;
Plunk, G. G. ;
Banon Navarro, A. ;
Jenko, F. .
JOURNAL OF PLASMA PHYSICS, 2021, 87 (03)
[4]   Enhanced energy confinement after series of pellets in Wendelstein 7-X [J].
Baldzuhn, J. ;
Damm, H. ;
Beidler, C. D. ;
McCarthy, K. ;
Panadero, N. ;
Biedermann, C. ;
Bozhenkov, S. A. ;
Dinklage, A. ;
Brunner, K. J. ;
Fuchert, G. ;
Kazakov, Y. ;
Beurskens, M. ;
Dibon, M. ;
Geiger, J. ;
Grulke, O. ;
Hoefel, U. ;
Klinger, T. ;
Koechl, F. ;
Knauer, J. ;
Kocsis, G. ;
Kornejew, P. ;
Lang, P. T. ;
Langenberg, A. ;
Laqua, H. ;
Pablant, N. A. ;
Pasch, E. ;
Pedersen, T. S. ;
Ploeckl, B. ;
Rahbarnia, K. ;
Schlisio, G. ;
Scott, E. R. ;
Stange, T. ;
Von Stechow, A. ;
Szepesi, T. ;
Turkin, Y. ;
Wagner, F. ;
Winters, V ;
Wurden, G. ;
Zhang, D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (05)
[5]  
Behringer K., 1988, Description of the impurity transport code `STRAHL'
[6]   Demonstration of reduced neoclassical energy transport in Wendelstein 7-X [J].
Beidler, C. D. ;
Smith, H. M. ;
Alonso, A. ;
Andreeva, T. ;
Baldzuhn, J. ;
Beurskens, M. N. A. ;
Borchardt, M. ;
Bozhenkov, S. A. ;
Brunner, K. J. ;
Damm, H. ;
Drevlak, M. ;
Ford, O. P. ;
Fuchert, G. ;
Geiger, J. ;
Helander, P. ;
Hergenhahn, U. ;
Hirsch, M. ;
Hoefel, U. ;
Kazakov, Ye. O. ;
Kleiber, R. ;
Krychowiak, M. ;
Kwak, S. ;
Langenberg, A. ;
Laqua, H. P. ;
Neuner, U. ;
Pablant, N. A. ;
Pasch, E. ;
Pavone, A. ;
Pedersen, T. S. ;
Rahbarnia, K. ;
Schilling, J. ;
Scott, E. R. ;
Stange, T. ;
Svensson, J. ;
Thomsen, H. ;
Turkin, Y. ;
Warmer, F. ;
Wolf, R. C. ;
Zhang, D. .
NATURE, 2021, 596 (7871) :221-+
[7]   Compact imaging Bragg spectrometer for fusion devices [J].
Bertschinger, G ;
Biel, W ;
Jaegers, H ;
Marchuk, O .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10) :3727-3729
[8]   Design of a high-efficiency extreme ultraviolet overview spectrometer system for plasma impurity studies on the stellarator experiment Wendelstein 7-X [J].
Biel, W ;
Bertschinger, G ;
Burhenn, R ;
König, R ;
Jourdain, E .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10) :3268-3275
[9]   NEO-CLASSICAL TRANSPORT-THEORY OF A PLASMA WITH MULTIPLE ION SPECIES [J].
CONNOR, JW .
PLASMA PHYSICS AND CONTROLLED FUSION, 1973, 15 (08) :765-782
[10]   Overview of the Wendelstein 7-X phase contrast imaging diagnostic [J].
Edlund, E. M. ;
Porkolab, M. ;
Huang, Z. ;
Grulke, O. ;
Boettger, L. -G. ;
von Sehren, C. ;
von Stechow, A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10)